A novel pH sensitive, colorimetric ionic liquid nanosensor based on phosphonium salts of fluorescein is reported. Herein, fluorescein salts of various stoichiometries were synthesized by use of a trihexyltetradecylphosphonium cation [TTP] in combination with dianionic [FL] and monoanionic [FL] fluorescein. Nanomaterials derived from these two compounds yielded contrasting colorimetric responses in neutral and acidic environments. Variations in fluorescence spectra as a function of pH were also observed. Examination of TEM and DLS data revealed significant expansion in the diameter of [TTP][FL] nanodroplets in acidic environments of variable pHs. A similar trend was also observed for [TTP][FL] nanoparticles. The pH dependent colorimetric and other optical properties of these nanomaterials are attributed to alterations in molecular orientations and stacking as suggested by measuring the absorption, fluorescence, and zeta potential. Since the pH is an important indicator for many diseases, including cancer, these nanosensors are considered to be potential candidates for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174468 | PMC |
http://dx.doi.org/10.1039/C3RA42394H | DOI Listing |
J Mass Spectrom
February 2025
FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, College of Chemical and Biological Engineering, CHINA.
Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFRSC Adv
January 2025
Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
Mild steel provides strength to various building and industrial materials but it is badly affected by corrosion. In the present study, we investigate the efficacy of , a plant-based green corrosion inhibitor to minimize mild steel corrosion in a 1 M HSO solution. Weight loss, surface coverage, inhibition efficiency, and corrosion rate measurements were evaluated for various inhibitor concentrations and time intervals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!