Variation is essential to ecological and evolutionary dynamics, but genetic variation of quantitative traits may be concentrated in a limited number of dimensions, constraining ecoevolutionary dynamics. We describe high-dimension variation in natural accessions of the model alga, Chlamydomonas reinhardtii, and test the hypothesis that extensive fitness variation across 30 environments is constrained to a small number of axes. We used high-throughput phenotyping to investigate morphological, fitness, and genotype × environment (G × E) variation in 18 natural C. reinhardtii accessions in 30 environments. The organismal phenotypes of cell cycle, cell size, and phototactic behavior exhibited substantial genetic variation between lines, and we found up to 74-fold fitness variation across accessions and environments. Approximately 47% of the extensive G × E variation is accounted for by the first two principal components (PCs) of the G-matrix corresponding to covariation in metals response, nitrogen availability, or salt and nutrient response. The natural variation of C. reinhardtii accessions supports the hypothesis that, despite abundant genetic variation across single environments, the species' adaptive response should be constrained along few major axes of selection. These results highlight the utility of natural accessions for integrating ecoevolutionary and genetic research.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13063DOI Listing

Publication Analysis

Top Keywords

genetic variation
16
variation
12
fitness variation
12
model alga
8
alga chlamydomonas
8
chlamydomonas reinhardtii
8
variation natural
8
natural accessions
8
reinhardtii accessions
8
accessions environments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!