Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups.

Carbohydr Polym

Polymer Science & Engineering Division, CSIR - National Chemical Laboratory, Pune 411008, India. Electronic address:

Published: December 2014

AI Article Synopsis

  • This study examines how adding carboxyl (COOH) and aldehyde (CHO) functional groups to different positions on cellulose affects its thermal stability.
  • The findings reveal that 2,3-dialdehyde cellulose is the most thermally stable, while the presence of a carboxyl group at the C6 position leads to instability.
  • More reducing end groups in the cellulose polymer chain correlate with lower thermal stability, indicating the impact of functional groups on the stability of oxidized cellulose products.

Article Abstract

Oxidized cellulose containing carboxyl and aldehyde functional groups represent an important class of cellulose derivatives. In this study effect of incrementally increasing COOH and CHO groups at C2, C3, and C6 positions of cellulose and nanocellulose has been investigated, with a view to understanding their effect on thermal treatment of cellulose. The results show that 2,3-dialdehyde cellulose (DAC) is the most thermally stable oxidized product of cellulose while the most unstable derivatives contain carboxyl group at the C6 position (6CC). Carboxymethylcellulose (CMC), with carboxymethyl group on C6 position, is more stable than 6CC. Multi-functionalized celluloses 2,3,6-tricarboxycellulose and 6-carboxy-2,3-dialdehyde, have the same level of thermal stability as 6CC, showing that the presence of carboxyl at the C6 is a key destabilizing factor in the thermal stability of oxidized cellulose products. More the number of reducing end groups on the polymer chain, lower the thermal stability of the cellulose, as proved by comparing the TGA/DTG of monomeric analogs dextrose, cellobiose and glucuronic acid with the oxidized celluloses. The thermal stability trend observed for oxidized celluloses was DAC>DCC>nanoparticles>dextrose>glucuronic acid, caused by extent of reducing ends and COOH groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2014.08.032DOI Listing

Publication Analysis

Top Keywords

thermal stability
20
cellulose
9
stability cellulose
8
carboxyl aldehyde
8
oxidized cellulose
8
group position
8
oxidized celluloses
8
thermal
6
groups
5
oxidized
5

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).

View Article and Find Full Text PDF

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!