A surface-enhanced Raman spectroscopy (SERS) assay has been designed to detect Bacillus anthracis spores. The assay consists of silver nanoparticles embedded in a porous glass structure that have been functionalized with ATYPLPIR, a peptide developed to discriminately bind B. anthracis versus other species of Bacillus. Once bound, acetic acid was used to release the biomarker dipicolinic acid from the spores, which was detected by SERS through the addition of silver colloids. This SERS assay was used to selectively bind B. anthracis with a 100-fold selectivity versus B. cereus, and to detect B. anthracis Ames at concentrations of 1000 spores per mL within 15 minutes. The SERS assay measurements provide a basis for the development of systems that can detect spores collected from the air or from water supplies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an01163eDOI Listing

Publication Analysis

Top Keywords

sers assay
16
anthracis spores
8
spores minutes
8
bind anthracis
8
anthracis
5
spores
5
sers
5
assay
5
selective detection
4
detection 1000
4

Similar Publications

Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:

Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.

View Article and Find Full Text PDF

A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus.

Anal Chim Acta

February 2025

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:

Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.

View Article and Find Full Text PDF

Background: Intraoperative imaging is critical for achieving precise cancer resection. Among available techniques, Raman spectral imaging emerges as a promising modality due to its high spatial resolution and signal stability. However, its clinical application for in vivo imaging is limited by the inherently weak Raman scattering signal.

View Article and Find Full Text PDF

A portable paper-based surface enhanced Raman scattering platform for Al sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemistry, Liaoning University, Shenyang 110036, China. Electronic address:

The adverse effects of Al ions on human health necessitate the development of ultra-sensitive detection methods for Al ions. In this regard, the compact and portable design of the detection substrate is of utmost importance for achieving in-situ and sensitive detection of Al ions. In our study, we have successfully developed a surface-enhanced Raman scattering (SERS) platform with gold nanoparticles (Au NPs) that was modified with histidine (His) and 4-mercaptobenzoic acid (4-MBA) for the SERS detection of Al ions.

View Article and Find Full Text PDF

Electrochemical UV-SERS of adenine on cobalt electrode.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3 LT-10257 Vilnius, Lithuania. Electronic address:

The combination of surface-enhanced Raman spectroscopy in the ultraviolet spectral region (UV-SERS) with resonance Raman scattering enhancement, referred to as UV-SERRS, enables ultrasensitive and reliable detection of biomolecules because of the strong electronic transition of many biologically important compounds in UV region. Adenine solution studies by UV-Raman spectroscopy revealed pre-resonant enhancement of various modes by 2-16 times at 325 nm excitation wavelength. Adsorption and structural properties of adenine on a cobalt electrode were probed by UV-SERS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!