Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In proton therapy, passive scattered proton plans use compensators to conform the dose to the distal surface of the planning volume. These devices are custom made from acrylic or wax for each treatment field using either a plunge-drilled or smooth-milled compensator design. The purpose of this study was to investigate if there is a clinical benefit of generating passive scattered proton radiation treatment plans with the smooth compensator design. We generated 4 plans with different techniques using the smooth compensators. We chose 5 sites and 5 patients for each site for the range of dosimetric effects to show adequate sample. The plans were compared and evaluated using multicriteria (MCA) plan quality metrics for plan assessment and comparison using the Quality Reports [EMR] technology by Canis Lupus LLC. The average absolute difference for dosimetric metrics from the plunged-depth plan ranged from -4.7 to +3.0 and the average absolute performance results ranged from -6.6% to +3%. The manually edited smooth compensator plan yielded the best dosimetric metric, +3.0, and performance, + 3.0% compared to the plunged-depth plan. It was also superior to the other smooth compensator plans. Our results indicate that there are multiple approaches to achieve plans with smooth compensators similar to the plunged-depth plans. The smooth compensators with manual compensator edits yielded equal or better target coverage and normal tissue (NT) doses compared with the other smooth compensator techniques. Further studies are under investigation to evaluate the robustness of the smooth compensator design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meddos.2014.07.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!