A novel electrochemical approach to the direct detection of hydrogen sulfide (H2S), in aqueous solutions, covering a wide pH range (acid to alkali), is described. In brief, a dual band electrode device is employed, in a hydrodynamic flow cell, where the upstream electrode is used to controllably generate hydroxide ions (OH(-)), which flood the downstream detector electrode and provide the correct pH environment for complete conversion of H2S to the electrochemically detectable, sulfide (HS(-)) ion. All-diamond, coplanar conducting diamond band electrodes, insulated in diamond, were used due to their exceptional stability and robustness when applying extreme potentials, essential attributes for both local OH(-) generation via the reduction of water, and for in situ cleaning of the electrode, post oxidation of sulfide. Using a galvanostatic approach, it was demonstrated the pH locally could be modified by over five pH units, depending on the initial pH of the mobile phase and the applied current. Electrochemical detection limits of 13.6 ppb sulfide were achieved using flow injection amperometry. This approach which offers local control of the pH of the detector electrode in a solution, which is far from ideal for optimized detection of the analyte of interest, enhances the capabilities of online electrochemical detection systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac502941hDOI Listing

Publication Analysis

Top Keywords

electrochemical detection
12
hydrogen sulfide
8
detector electrode
8
detection
5
sulfide
5
electrode
5
situ optimization
4
optimization parts-per-billion
4
electrochemical
4
parts-per-billion electrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!