Stable layers of crown ethers were grown on muscovite mica using the potassium-crown ether interaction. The multilayers were grown from solution and from the vapor phase and were analyzed with atomic force microscopy (AFM), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and surface X-ray diffraction (SXRD). The results show that the first molecular layer of the three investigated dibenzo crown ethers is more rigid than the second because of the strong interaction of the first molecular layer with the potassium ions on the surface of muscovite mica. SXRD measurements revealed that for all of the investigated dibenzo crown ethers the first molecule lies relatively flat whereas the second lies more upright. The SXRD measurements further revealed that the molecules of the first layer of dibenzo-15-crown-5 are on top of a potassium atom, showing that the binding mechanism of this layer is indeed of the coordination complex form. The AFM and SXRD data are in good agreement, and the combination of these techniques is therefore a powerful way to determine the molecular orientation at surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la502879z | DOI Listing |
Materials (Basel)
December 2024
Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Krakow, Poland.
Direct lithium extraction from unconventional resources requires the development of effective adsorbents. Crown ether-containing materials have been reported as promising structures in terms of lithium selectivity, but data on adsorption in real, highly saline brines are scarce. Crown ether-grafted graphene oxides were synthesized using 2-hydroxymethyl-12-crown-4, hydroxy-dibenzo-14-crown-4 and epichlorohydrin as a source of anchoring groups.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
Crown ethers (CEs), macrocyclic polyethers, have attracted significant attention in supramolecular chemistry. It is known that they have many isomers due to their flexibility. It is challenging to select some exact conformation and tune the following self-assembly structure of CEs, and it has rarely been reported to date.
View Article and Find Full Text PDFCrown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel (DB18C6/PA) is successfully synthesized by microwave irradiation and directional freezing technology.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe, Germany.
Crown-ether coordination compounds of europium(II/III) and the crown ether (CHO) (24-crown-8, 24c8) are prepared, aiming at novel compounds, structures, and coordination modes as well as potential luminescence properties. By reacting EuCl, EuI, or EuCl with 24c8 or its derivatives in ionic liquids, the novel compounds [BuMeN][Eu(II)(NTf)] (), [BMIm][EuI] (), [EuCl(dibenzo-18c6)] (), [EuI(dibenzo-24c8)] (), [(Eu(III)Cl)(CHO)](24c8) (), and [Eu(III)Cl(24c8)]I () are obtained (BMIm: 1-butyl-3-methylimidazolium; EMIm: 1-ethyl-3-methylimidazolium). Based on different reaction conditions, different coordinative modes including the absence of the crown ether in the product (, ), splitting of the crown ether (), and coordination of 24c8 via six of eight oxygen atoms () and, finally, via all oxygen atoms () are observed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!