Positive selection of diverse yet self-tolerant thymocytes is vital to immunity and requires a limited degree of T cell antigen receptor (TCR) signaling in response to self peptide-major histocompatibility complexes (self peptide-MHCs). Affinity of newly generated TCR for peptide-MHC primarily sets the boundaries for positive selection. We report that N-glycan branching of TCR and the CD4 and CD8 coreceptors separately altered the upper and lower affinity boundaries from which interactions between peptide-MHC and TCR positively select T cells. During thymocyte development, N-glycan branching varied approximately 15-fold. N-glycan branching was required for positive selection and decoupled Lck signaling from TCR-driven Ca(2+) flux to simultaneously promote low-affinity peptide-MHC responses while inhibiting high-affinity ones. Therefore, N-glycan branching imposes a sliding scale on interactions between peptide-MHC and TCR that bidirectionally expands the affinity range for positive selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ni.3007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!