Effects of culture on PAMPS/PDMAAm double-network gel on chondrogenic differentiation of mouse C3H10T1/2 cells: in vitro experimental study.

BMC Musculoskelet Disord

Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan.

Published: September 2014

Background: Recently, several animal studies have found that spontaneous hyaline cartilage regeneration can be induced in vivo within a large osteochondral defect by implanting a synthetic double-network (DN) hydrogel, which is composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and poly-(N,N'-dimethyl acrylamide) (PDMAAm), at the bottom of the defect. However, the effect of hydrogel on hyaline cartilage regeneration remains unexplained. The purpose of this study was to investigate the chondrogenic differentiation of C3H10T1/2 cells on PAMPS/PDMAAm DN gel.

Methods: C3H10T1/2 cells of 1.0 × 105 were cultured on PAMPS/PDMAAm DN gel in polystyrene tissue culture dishes or directly on polystyrene tissue culture dishes. We compared cultured cells on PAMPS/PDMAAm DN gel with those on polystyrene dishes by morphology using phase-contrast microscopy, mRNA expression of aggrecan, type I collagen, type II collagen, Sox 9 and osteocalcin using real-time RT-PCR, and local expression of type II collagen using immunocytochemistry.

Results: C3H10T1/2 cells cultured on the PAMPS/PDMAAm DN gels formed focal adhesions, aggregated rapidly and developed into large nodules within 7 days, while the cells cultured on the polystyrene surface did not. The mRNA levels of aggrecan, type I collagen, type II collagen, Sox 9 and osteocalcin were significantly greater in cells cultured on the PAMPS/PDMAAm DN gel than in those cultured on polystyrene dishes. In addition, C3H10T1/2 cells cultured on PAMPS/PDMAAm DN gel expressed more type II collagen at the protein level when compared with cells cultured on polystyrene dishes.

Conclusions: The present study showed that PAMPS/PDMAAm DN gel enhanced chondrogenesis of C3H10T1/2 cells, which are functionally similar to mesenchymal stem cells. This suggests that mesenchymal stem cells from the bone marrow contribute to spontaneous hyaline cartilage regeneration in vivo in large osteochondral defects after implantation of PAMPS/PDMAAm DN gels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190488PMC
http://dx.doi.org/10.1186/1471-2474-15-320DOI Listing

Publication Analysis

Top Keywords

c3h10t1/2 cells
24
type collagen
24
pamps/pdmaam gel
20
cells cultured
20
cultured pamps/pdmaam
16
cells
12
hyaline cartilage
12
cartilage regeneration
12
cultured polystyrene
12
pamps/pdmaam
9

Similar Publications

Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression.

J Cell Sci

January 2025

Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.

The GLI1/GLI2/GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R), and in activation of GLI2.

View Article and Find Full Text PDF

Perfluorooctanoic acid and its alternatives disrupt the osteogenesis and osteoclastogenesis balance: Evidence from the effects on cell differentiation process.

Sci Total Environ

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:

In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.

View Article and Find Full Text PDF

Background: Cellular senescence is a key driver of decreased bone formation and osteoporosis. Leptin (LEP) has been implicated in cellular senescence and osteogenic differentiation. The aim of this study was to investigate the mechanisms by which LEP mediates cellular senescence and osteogenic differentiation.

View Article and Find Full Text PDF

The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions.

View Article and Find Full Text PDF

Bone tissue engineering is a growing field that provides solutions for the treatment of bone deformities, injuries, diseases, and anomalies by replacing autograft and allograft procedures. Various scaffolding materials have been used for the construction of bone tissue, including metals, ceramics, and polymers. This study investigates an innovative liquid exfoliation approach for the production of molybdenum disulfide (MoS) nanosheets using riboflavin (RF-MoS) as an exfoliation agent and subsequently analytically characterized for the development of bone scaffolding system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!