Iron and manganese are part of a small group of transition metals required for photosynthetic electron transport. Here, we present evidence for a functional link between iron and manganese homeostasis. In the unicellular cyanobacterium, Synechocystis sp. PCC 6803, Fe and Mn deprivation resulted in distinct modifications of the physiological status. The effect on growth and photosynthetic activity under Fe limitation were more severe than those observed under Mn limitation. Moreover, the intracellular elemental quotas of Fe and Mn were found to be linked. Fe limitation reduced the intracellular Mn quota. Mn limitation did not exert a reciprocal effect on Fe quotas. Microarray analysis comparing Mn and Fe limitation revealed a stark difference in the extent of the transcriptional response to the two limiting conditions, reflective of the physiological responses. The effects of Fe limitation on the transcriptional network are widespread while the effects on Mn limitation are highly specific. Our analysis also revealed an overlap in the transcriptional response of specific Fe and Mn transporters. This overlap provides a framework for explaining Fe limitation induced changes in Mn quotas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2014.09.007 | DOI Listing |
Antioxidants (Basel)
December 2024
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
Glutathione S-transferases (GSTs) are evolutionarily conserved enzymes crucial for cell detoxication. They are viewed as having evolved in cyanobacteria, the ancient photosynthetic prokaryotes that colonize our planet and play a crucial role for its biosphere. Xi-class GSTs, characterized by their specific glutathionyl-hydroquinone reductase activity, have been observed in prokaryotes, fungi and plants, but have not yet been studied in cyanobacteria.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318 Leipzig, Germany.
Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen.
View Article and Find Full Text PDFMicrobiol Res
November 2024
State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China. Electronic address:
Nat Commun
November 2024
Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China.
Plant Cell Physiol
October 2024
Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!