Enhanced 5-HT1A receptor-dependent feedback control over dorsal raphe serotonin neurons in the SERT knockout mouse.

Neuropharmacology

Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Published: February 2015

AI Article Synopsis

  • 5-HT1A receptors in the brain help regulate serotonin neurons and adapt their functioning during mood disorders, particularly in stress responses.
  • SERT-KO mice, which are genetically modified to be vulnerable to stress, showed more passive responses to stress and lower activation of the medial prefrontal cortex (mPFC) compared to normal mice; these effects were reversed when 5-HT1A receptors were blocked.
  • Experiments revealed that in SERT-KO mice, 5-HT1A receptors exerted a greater inhibitory influence on both the mPFC and dorsal raphe nucleus (DRN), indicating a heightened feedback inhibition of serotonin neurons linked to increased stress sensitivity.

Article Abstract

5-HT1A receptors are widely expressed in the brain and play a critical role in feedback inhibition of serotonin (5-HT) neurons through multiple mechanisms. Yet, it remains poorly understood how these feedback mechanisms, particularly those involving long-range projections, adapt in mood disorders. Here, we examined several aspects of 5-HT1A receptor function in the 5-HT transporter knockout mouse (SERT-KO), a model of vulnerability to stress and mood disorders. We found that in comparison to wild-type (WT) mice, SERT-KO mice had more passive coping in response to acute swim stress and this was accompanied by hypo-activation of medial prefrontal cortex (mPFC) Fos expression. Both of these effects were reversed by systemically blocking 5-HT1A receptors. Ex-vivo electrophysiological experiments showed that 5-HT exerted greater 5-HT1A-mediated inhibitory effects in the mPFC of SERT-KO mice compared to WT. Since 5-HT1A receptors in the mPFC provide a key feedback regulation of the dorsal raphe nucleus (DRN), we used a disinhibition strategy to examined endogenous feedback control of 5-HT neurons. Blocking 5-HT1A receptors disinhibited several fold more 5-HT neurons in the DRN of SERT-KO than in WT mice, revealing the presence of enhanced feedback inhibition of 5-HT neurons in the SERT-KO. Taken together our results indicate that increased stress sensitivity in the SERT-KO is associated with the enhanced capacity of 5-HT1A receptors to inhibit neurons in the mPFC as well as to exert feedback inhibition of DRN 5-HT neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250382PMC
http://dx.doi.org/10.1016/j.neuropharm.2014.09.017DOI Listing

Publication Analysis

Top Keywords

5-ht1a receptors
20
5-ht neurons
20
feedback inhibition
12
sert-ko mice
12
feedback control
8
dorsal raphe
8
knockout mouse
8
mood disorders
8
feedback
7
neurons
7

Similar Publications

The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.

View Article and Find Full Text PDF

Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.

View Article and Find Full Text PDF

Long-Term 5-HT Receptor Agonist NLX-112 Treatment Improves Functional Recovery After Spinal Cord Injury.

Int J Mol Sci

December 2024

Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Spinal cord injury (SCI) results in functional deficits below the injured spinal level. The descending serotonergic system in the spinal cord is critically involved in the control of motor and autonomic functions. Specifically, SCI damages the projections of serotonergic fibers, which leads to reduced serotonin inputs and increased amounts of spinal serotonergic receptors.

View Article and Find Full Text PDF

CBD and the 5-HT1A receptor: A medicinal and pharmacological review.

Biochem Pharmacol

January 2025

Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA. Electronic address:

Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated.

View Article and Find Full Text PDF

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!