The utilization of amorphous μ-S and orthorhombic α-S8 by thermoacidophile Sulfobacillus thermosulfidooxidans was firstly investigated in terms of cell growth and sulfur oxidation behavior. The morphology and surface sulfur speciation transformation were evaluated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy and sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. The results showed that the strain grown on μ-S entered slower (about 1 day later) into the exponential phase, while grew faster in exponential phase and attained higher maximal cell density and lower pH than on α-S8. After bio-corrosion, both sulfur samples were evidently eroded, but only μ-S surface presented much porosity, while α-S8 maintained glabrous. μ-S began to be gradually converted into α-S8 from day 2 when the bacterial cells entered the exponential phase, with a final composition of 62.3% μ-S and 37.7% α-S8 on day 4 at the stationary phase. α-S8 was not found to transform into other species in the experiments with or without bacteria. These data indicated S. thermosulfidooxidans oxidized amorphous μ-S faster than orthorhombic α-S8, but the chain-like μ-S was transformed into cyclic α-S8 by S. thermosulfidooxidans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resmic.2014.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!