Biological methane biodegradation is a promising treatment alternative when the methane produced in waste management facilities cannot be used for energy generation. Two-phase partitioning bioreactors (TPPBs), provided with a non-aqueous phase (NAP) with high affinity for the target pollutant, are particularly suitable for the treatment of poorly water-soluble compounds such as methane. Nevertheless, little is known about the influence of the presence of the NAP on the resulting biodegradation kinetics in TPPBs. In this study, an experimental framework based on the in situ pulse respirometry technique was developed to assess the impact of NAP addition on the methane biodegradation kinetics using Methylosinus sporium as a model methane-degrading microorganism. A comprehensive mass transfer characterization was performed in order to avoid mass transfer limiting scenarios and ensure a correct kinetic parameter characterization. The presence of the NAP mediated significant changes in the apparent kinetic parameters of M. sporium during methane biodegradation, with variations of 60, 120, and 150% in the maximum oxygen uptake rate, half-saturation constant and maximum specific growth rate, respectively, compared with the intrinsic kinetic parameters retrieved from a control without NAP. These significant changes in the kinetic parameters mediated by the NAP must be considered for the design, operation and modeling of TPPBs devoted to air pollution control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2014.08.054DOI Listing

Publication Analysis

Top Keywords

methane biodegradation
16
biodegradation kinetics
12
kinetic parameters
12
two-phase partitioning
8
partitioning bioreactors
8
pulse respirometry
8
presence nap
8
mass transfer
8
nap
6
biodegradation
5

Similar Publications

The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).

View Article and Find Full Text PDF

Background: Our study examines the relationship between gastroesophageal reflux disease (GERD) and small intestinal bacterial overgrowth (SIBO), focusing on the potential impact of acid-suppressive drugs. We also explore changes in gut microbiota and metabolism in patients with both conditions.

Methods: This study included patients from the Department of Gastroenterology, Beijing Shijitan Hospital, between February 2021 and November 2023.

View Article and Find Full Text PDF

Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.

View Article and Find Full Text PDF

Pomegranate peels are an industrial by-product high in sugar and phytochemical content and pose an environmental concern. Meanwhile, ensiling legume forage such as berseem is difficult due to its lower dry matter content and water-soluble carbohydrate-to-buffering capacity ratio, which leads to a poor fermentation process. To date, no studies have been conducted to investigate the effect of co-ensiling pomegranate peels with berseem.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!