Polymorphonuclear neutrophils (PMNs) and macrophages are crucial contributors to neovascularization, serving as a source of chemokines, growth factors, and proteases. α(M)β(2)(CD11b/CD18) and α(L)β(2)(CD11a/CD18) are expressed prominently and have been implicated in various responses of these cell types. Thus, we investigated the role of these β2 integrins in angiogenesis. Angiogenesis was analyzed in wild-type (WT), α(M)-knockout (α(M)(-/-)), and α(L)-deficient (α(L)(-/-)) mice using B16F10 melanoma, RM1 prostate cancer, and Matrigel implants. In all models, vascular area was decreased by 50-70% in α(M)(-/-) mice, resulting in stunted tumor growth as compared with WT mice. In contrast, α(L) deficiency did not impair angiogenesis and tumor growth. The neovessels in α(M)(-/-) mice were leaky and immature because they lacked smooth muscle cell and pericytes. Defective angiogenesis in the α(M)(-/-) mice was associated with attenuated PMN and macrophage recruitment into tumors. In contrast to WT or the α(L)(-/-) leukocytes, the α(M)(-/-) myeloid cells showed impaired plasmin (Plm)-dependent extracellular matrix invasion, resulting from 50-75% decrease in plasminogen (Plg) binding and pericellular Plm activity. Surface plasmon resonance verified direct interaction of the α(M)I-domain, the major ligand binding site in the β(2) integrins, with Plg. However, the α(L)I-domain failed to bind Plg. In addition, endothelial cells failed to form tubes in the presence of conditioned medium collected from TNF-α-stimulated PMNs derived from the α(M)(-/-) mice because of severely impaired degranulation and secretion of VEGF. Thus, α(M)β(2) plays a dual role in angiogenesis, supporting not only Plm-dependent recruitment of myeloid cells to angiogenic niches, but also secretion of VEGF by these cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201972 | PMC |
http://dx.doi.org/10.4049/jimmunol.1400202 | DOI Listing |
Circulation
December 2024
Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.).
Acta Biomater
January 2025
State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:
Photothermal therapy (PTT) is a promising treatment strategy for malignant tumors. Photothermal agents which can achieve efficient photothermal conversion in the NIR-II region plays crucial roles in this remedy. Here, we report one type of thermo-responsive gold nanorod vesicles USGRV-17-AAG for combined NIR-II photothermal therapy and chemotherapy of solid tumors.
View Article and Find Full Text PDFNature
November 2024
Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Aesthetic Plast Surg
October 2024
Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Background: Cell-assisted acellular adipose matrix (AAM) transfer is a novel technique for soft tissue volume restoration, where AAM acts as a scaffold for tissue proliferation and promotes host cell migration, vascularization, and adipogenesis. This study aimed to evaluate the efficacy and safety of in vivo cell-assisted AAM transfer compared to hyaluronic acid (HA) filler injection.
Methods: Human adipose tissue was used to manufacture AAM, and murine adipose-derived stem cells (ASCs) were prepared.
Nat Cell Biol
August 2024
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
The accumulation of senescent cells promotes ageing and age-related diseases, but molecular mechanisms that senescent cells use to evade immune clearance and accumulate in tissues remain to be elucidated. Here we report that p16-positive senescent cells upregulate the immune checkpoint protein programmed death-ligand 1 (PD-L1) to accumulate in ageing and chronic inflammation. We show that p16-mediated inhibition of cell cycle kinases CDK4/6 induces PD-L1 stability in senescent cells via downregulation of its ubiquitin-dependent degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!