Dual role of the leukocyte integrin αMβ2 in angiogenesis.

J Immunol

Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195;

Published: November 2014

Polymorphonuclear neutrophils (PMNs) and macrophages are crucial contributors to neovascularization, serving as a source of chemokines, growth factors, and proteases. α(M)β(2)(CD11b/CD18) and α(L)β(2)(CD11a/CD18) are expressed prominently and have been implicated in various responses of these cell types. Thus, we investigated the role of these β2 integrins in angiogenesis. Angiogenesis was analyzed in wild-type (WT), α(M)-knockout (α(M)(-/-)), and α(L)-deficient (α(L)(-/-)) mice using B16F10 melanoma, RM1 prostate cancer, and Matrigel implants. In all models, vascular area was decreased by 50-70% in α(M)(-/-) mice, resulting in stunted tumor growth as compared with WT mice. In contrast, α(L) deficiency did not impair angiogenesis and tumor growth. The neovessels in α(M)(-/-) mice were leaky and immature because they lacked smooth muscle cell and pericytes. Defective angiogenesis in the α(M)(-/-) mice was associated with attenuated PMN and macrophage recruitment into tumors. In contrast to WT or the α(L)(-/-) leukocytes, the α(M)(-/-) myeloid cells showed impaired plasmin (Plm)-dependent extracellular matrix invasion, resulting from 50-75% decrease in plasminogen (Plg) binding and pericellular Plm activity. Surface plasmon resonance verified direct interaction of the α(M)I-domain, the major ligand binding site in the β(2) integrins, with Plg. However, the α(L)I-domain failed to bind Plg. In addition, endothelial cells failed to form tubes in the presence of conditioned medium collected from TNF-α-stimulated PMNs derived from the α(M)(-/-) mice because of severely impaired degranulation and secretion of VEGF. Thus, α(M)β(2) plays a dual role in angiogenesis, supporting not only Plm-dependent recruitment of myeloid cells to angiogenic niches, but also secretion of VEGF by these cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201972PMC
http://dx.doi.org/10.4049/jimmunol.1400202DOI Listing

Publication Analysis

Top Keywords

αm-/- mice
16
dual role
8
β2 integrins
8
tumor growth
8
myeloid cells
8
secretion vegf
8
angiogenesis
6
αm-/-
6
mice
6
role leukocyte
4

Similar Publications

Inositol 1,4,5-Trisphosphate Receptor 1 Gain-of-Function Increases the Risk for Cardiac Arrhythmias in Mice and Humans.

Circulation

December 2024

Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.).

Article Synopsis
  • * Researchers identified 21 human ITPR1 GOF variants and created a mouse model with one of these variants (ITPR1-W1457G), which was found to be prone to stress-induced ventricular arrhythmias.
  • * Both mouse models and human data suggest that ITPR1 GOF variants increase Ca handling abnormalities and arrhythmia risk, with 7 rare ITPR1 variants in a human database showing similar GOF behavior linked to cardiac
View Article and Find Full Text PDF

Thermo-responsive gold nanorod vesicles for combined NIR-II photothermal therapy and chemotherapy of solid tumors.

Acta Biomater

January 2025

State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Photothermal therapy (PTT) is a promising treatment strategy for malignant tumors. Photothermal agents which can achieve efficient photothermal conversion in the NIR-II region plays crucial roles in this remedy. Here, we report one type of thermo-responsive gold nanorod vesicles USGRV-17-AAG for combined NIR-II photothermal therapy and chemotherapy of solid tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Dual immune checkpoint blockade (ICB) using CTLA4 and PD-(L)1 inhibitors shows improved anti-tumor effectiveness and immune toxicity compared to PD-(L)1 inhibitors alone in advanced non-small-cell lung cancer (NSCLC) patients.
  • Patients with mutations in STK11 and/or KEAP1 genes benefit more from the combination treatment compared to those receiving only PD-(L)1 inhibitors, as shown in the POSEIDON trial.
  • The loss of KEAP1 serves as a strong predictor for the success of dual ICB, as it leads to a more favorable outcome by changing the tumor's immune environment to better engage CD4 and CD8 T cells for anti-tumor activity. *
View Article and Find Full Text PDF

Efficacy and Safety of Cell-Assisted Acellular Adipose Matrix Transfer for Volume Retention and Regeneration Compared to Hyaluronic Acid Filler Injection.

Aesthetic Plast Surg

October 2024

Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Background: Cell-assisted acellular adipose matrix (AAM) transfer is a novel technique for soft tissue volume restoration, where AAM acts as a scaffold for tissue proliferation and promotes host cell migration, vascularization, and adipogenesis. This study aimed to evaluate the efficacy and safety of in vivo cell-assisted AAM transfer compared to hyaluronic acid (HA) filler injection.

Methods: Human adipose tissue was used to manufacture AAM, and murine adipose-derived stem cells (ASCs) were prepared.

View Article and Find Full Text PDF

The accumulation of senescent cells promotes ageing and age-related diseases, but molecular mechanisms that senescent cells use to evade immune clearance and accumulate in tissues remain to be elucidated. Here we report that p16-positive senescent cells upregulate the immune checkpoint protein programmed death-ligand 1 (PD-L1) to accumulate in ageing and chronic inflammation. We show that p16-mediated inhibition of cell cycle kinases CDK4/6 induces PD-L1 stability in senescent cells via downregulation of its ubiquitin-dependent degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!