mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function.

J Immunol

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland

Published: November 2014

The mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of NK cells, lymphocytes that play key roles in antiviral and antitumor immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell proinflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFN-γ, which is important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, upregulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFN-γ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201970PMC
http://dx.doi.org/10.4049/jimmunol.1401558DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
12
cell effector
8
mtorc1 activity
8
mtorc1
6
mtorc1-dependent metabolic
4
reprogramming prerequisite
4
cell
4
prerequisite cell
4
function
4
effector function
4

Similar Publications

Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-) rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges due to the absence of specific biomarkers, underscoring the need to elucidate its distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear cells (PBMCs) and synovial tissues of patients with ACPA- and ACPA+ RA, as well as healthy controls, were analyzed. Immune cell populations were classified based on clustering and marker gene expression, with pseudotime trajectory analysis, weighted gene co-expression network analysis (WGCNA), and transcription factor network inference providing further insights.

View Article and Find Full Text PDF

Objective: Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion.

Methods: Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control.

View Article and Find Full Text PDF

Advances in inflammatory senescence in liver disease.

Zhejiang Da Xue Xue Bao Yi Xue Ban

January 2025

Department of Family Medicine, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.

Inflammatory senescence is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases,and the research on its mechanisms becomes a hotspot currently. In viral hepatitis, the mechanisms of inflammatory senescence primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, the mechanisms of inflammatory senescence are more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and NAD metabolism abnormalities.

View Article and Find Full Text PDF

FOXM1 promotes malignant biological behavior and metabolic reprogramming by targeting SPINK1 in hepatocellular carcinoma and affecting the p53 pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China. Electronic address:

This study investigates the role of SPINK1 in liver cancer and its regulatory relationship with FOXM1. Using differential gene analysis in the GEO database, SPINK1 was identified as overexpressed in liver cancer tissues and associated with poor prognosis, confirmed via PCR. Functional assays demonstrated that SPINK1 knockdown reduced proliferation, migration, and invasion in liver cancer cells, while promoting apoptosis.

View Article and Find Full Text PDF

Fine-tuned programming of placenta trophoblast determines optimal maternal-fetal nutrient allocation.

Curr Opin Genet Dev

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Maternal health and fetal survival during pregnancy encapsulate a paradox of cooperation and competition. One particularly intriguing aspect of this paradox involves the optimal allocation of nutrients between the mother and fetus. Despite this, the precise mechanisms governing nutrient allocation remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!