During 2000-2004, 13 Shigella strains that were untypable by commercially available antisera were isolated from children <5 years of age with acute diarrhoea in Kolkata. These strains were subsequently identified as Shigella dysenteriae provisional serovar 204/96 (n = 3), Shigella dysenteriae provisional serovar E23507 (n = 1), Shigella dysenteriae provisional serovar I9809-73 (n = 1), Shigella dysenteriae provisional serovar 93-119 (n = 1), Shigella flexneri provisional serovar 88-893 (n = 6) and Shigella boydii provisional serovar E16553 (n = 1). In this study, characterization of those provisional serovars of Shigella was performed with respect to their antimicrobial resistance, plasmids, virulence genes and PFGE profiles. The drug resistant strains (n = 10) of Shigella identified in this study possessed various antibiotic resistance genetic markers like catA (for chloramphenicol resistance); tetA and tetB (for tetracycline resistance); dfrA1 and sul2 (for co-trimoxazole resistance); aadA1, strA and strB (for streptomycin resistance) and blaOXA-1 (for ampicillin resistance). Class 1 and/or class 2 integrons were present in eight resistant strains. Three study strains were pan-susceptible. A single mutation in the gyrA gene (serine to leucine at codon 83) was present in four quinolone resistant strains. The virulence gene ipaH (invasion plasmid antigen H) was uniformly present in all strains in this study, but the stx (Shiga toxin) and set1 (Shigella enterotoxin 1) genes were absent. Other virulence genes like ial (invasion associated locus) and sen (Shigella enterotoxin 2) were occasionally present. A large plasmid of 212 kb and of incompatibility type IncFIIA was present in the majority of the strains (n = 10) and diversity was noticed in the smaller plasmid profiles of these strains even within the same provisional serovars. PFGE profile analysis showed the presence of multiple unrelated clones among the isolates of provisional Shigella serovars. To the best of our knowledge, this is the first report on the phenotypic and molecular characterization of provisional serovars of Shigella isolates from Kolkata, India.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.081307-0DOI Listing

Publication Analysis

Top Keywords

molecular characterization
4
characterization serologically
4
serologically atypical
4
atypical provisional
4
provisional serovars
4
serovars shigella
4
shigella isolates
4
isolates kolkata
4
kolkata india
4
india 2000-2004
4

Similar Publications

Progenitor effect in the spleen drives early recovery via universal hematopoietic cell inflation.

Cell Rep

January 2025

Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:

Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.

View Article and Find Full Text PDF

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!