Gene cloning, sequence analysis, and expression profiles of a novel β-ring carotenoid hydroxylase gene from the photoheterotrophic green alga Chlorella kessleri.

Mol Biol Rep

College of Resources and Environmental Sciences, Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.

Published: November 2014

In this study, a full-length complementary DNA (cDNA) sequence of β-ring carotenoid hydroxylase (CHY), designated Ckecyp97a1, was isolated via reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends (RACE) methods. The cloned Ckecyp97a1 cDNA was 2,264-bp in length, and contained an open reading frame (ORF) of 1,944-bp with 5'-terminal untranslated region (UTR) of 66-bp and 3'-terminal UTR of 254-bp and encoded a β-ring CHY protein of 647 amino acids. The deduced protein had a calculated molecular mass of 71.43 kDa with an estimated isoelectric point (pI) of 6.72. Multiple sequence alignment and phylogenetic analysis revealed that Ckecyp97a1 was homologs to known chloroplastic cytochrome P450 (P450) CHY. The typical catalytic motifs of the P450 were highly conserved in the protein sequences of CkeCYP97A1. The Ckecyp97a1 transcriptional expression and carotenoids accumulation were observed under high light (HL) of different wavelengths (white: 390-770 nm and blue: 420-500 nm). The results revealed that Ckecyp97a1 transcript increased strongly throughout the course of the HL illumination treatment (22-70 h) under white HL treatment, while decreased during 10-58 h under blue HL treatment. The concentrations of lutein, α-carotene, and β-carotene were relatively steady and below the control level under both treatments. The zeaxanthin concentration was higher under white HL treatment than those under control and blue HL treatments. Ckecyp97a1 gene showed different expression patterns under different light wavelengths treatments. The data obtained in this study demonstrates that CkeCYP97A1 is the enzyme responsible for carotenoid hydroxylation involved in HL acclimation for photoheterotrophic green alga Chlorella kessleri CGMCC 4917.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-014-3524-8DOI Listing

Publication Analysis

Top Keywords

β-ring carotenoid
8
carotenoid hydroxylase
8
photoheterotrophic green
8
green alga
8
alga chlorella
8
chlorella kessleri
8
ckecyp97a1
8
revealed ckecyp97a1
8
light wavelengths
8
white treatment
8

Similar Publications

Fluorescence characterization of halophilic archaeal C50 carotenoid-bacterioruberin extracts was investigated using UV/Vis and steady-state fluorescence spectrophotometry in solvents with different polarity. Different extracts showed maximum absorption and fluorescence wavelengths between 369-536 nm and 540-569 nm. Stokes' shifts varied between 50-79 nm depending on the solvent.

View Article and Find Full Text PDF

Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports.

View Article and Find Full Text PDF

Background: Knowledge about the diet quality among youth who follow different types of plant-based diets is essential to understand whether support is required to ensure a well-planned diet that meets their nutritional needs. This study aimed to investigate how food groups, macronutrient intake, and objective blood measures varied between Norwegian youth following different plant-based diets compared to omnivorous diet.

Methods: Cross-sectional design, with healthy 16-to-24-year-olds (n = 165) recruited from the Agder area in Norway, following a vegan, lacto-ovo-vegetarian, pescatarian, flexitarian or omnivore diet.

View Article and Find Full Text PDF

Vitamin D-VDR and vitamin A-RAR affect IL-13 and IFNγ secretion from human CD4 T cells directly and indirectly via competition for their shared co-receptor RXR.

Scand J Immunol

January 2025

LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.

View Article and Find Full Text PDF

Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!