5-Fu is a pyrimidine analog which is wildly used in the treatment of cancers. The development of strategies that increase its anticancer activity has been studied over the past 20 years. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. In this study, we investigate the glucose metabolic profiles of non-small cell lung cancer cells in response to 5-Fu and cisplatin. Interestingly, the glucose metabolism of A549 cells is activated by 5-Fu treatment but suppressed by cisplatin treatment. We generalize 5-Fu-resistant and cisplatin-resistant cell lines from A549 cells. The glucose metabolism in 5-Fu-resistant cells is increased but decreased in cisplatin-resistant cells. In addition, glycolysis inhibition sensitizes lung cancer cells to 5-Fu. Importantly, we report a synergistic inhibitory effect on lung cancer cells by the combination of 5-Fu with cisplatin through the suppression of glucose metabolism both in vitro and in vivo. Moreover, restoration of glucose metabolism by overexpression of glycolytic key enzymes renders A549 cells resistant to 5-Fu. In summary, our study indicates that glycolysis inhibition contributes to the synergistic antitumor effect of combinational therapy, and targeting glycolysis could be an effective strategy for overcoming 5-Fu resistance in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13277-014-2543-3 | DOI Listing |
Ann Med
December 2025
Department of Emergency Medicine, Second Affiliated Hospital, Department of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
Background: Update, the link between HIV infection and abnormal glucose metabolism (AGM) is still unclear. This study aims to investigate the impact of HIV infection on AGM, including insulin resistance (IR), impaired fasting glucose (IFG), and diabetes mellitus (DM).
Methods: A multicenter case-control study was conducted in Zhejiang province, China.
Bioresour Bioprocess
January 2025
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Medicine (DIMED), University of Padova, Padua, Italy.
Purpose: A paradoxical increase in GH after oral glucose load (GH-Par) characterizes about one-third of acromegaly patients and is associated with a better response to first-generation somatostatin receptor ligands (fg-SRLs). Pasireotide is typically considered as a second-/third-line treatment. Here, we investigated the predictive role of GH-Par in pasireotide response and adverse event development.
View Article and Find Full Text PDFIntensive Care Med Exp
January 2025
Department of Life Sciences, Aberystwyth University, Ceredigion, UK.
Purpose: The landiolol and organ failure in patients with septic shock (STRESS-L study) included a pre-planned sub-study to assess the effect of landiolol treatment on inflammatory and metabolomic markers.
Methods: Samples collected from 91 patients randomised to STRESS-L were profiled for immune and metabolomic markers. A panel of pro- and anti-inflammatory cytokines were measured through commercially acquired multiplex Luminex assays and statistically analysed by individual and cluster-level analysis (patient).
Stem Cell Rev Rep
January 2025
Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!