Background: Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-Seq) provides a powerful tool for discovering protein-DNA interactions. Still, the computational analysis of the great amount of ChIP-Seq data generated, involving mapping of raw data to reference genome, has been a bottle neck for most of researchers in the transcriptional and epigenetic fields. Thus, user-friendly ChIP-Seq processing method sare much needed to enable greater community of computational and bench biologists to exploit the power of ChIP-Seq technology .

Findings: jChIP is a graphical tool that was developed to analyze and display ChIP-Seq data. It matches reads to the corresponding loci downloaded from Ensembl Genes or Ensembl Regulation databases. jChIP provides a friendly interface for exploratory analysis of mapped reads as well as peak calling data. The built-in functions for graphical display of reads distribution allows to evaluate the quality and meaning of ChIP-Seq data.

Conclusion: jChIP is a user-friendly GUI-based software for the analysis of ChIP-Seq data within context of known genomic features. Further, jChIP provides tools for discovering new and refining known genome-wide protein binding patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189168PMC
http://dx.doi.org/10.1186/1756-0500-7-676DOI Listing

Publication Analysis

Top Keywords

chip-seq data
16
jchip graphical
8
chip-seq
8
data
6
jchip
5
graphical environment
4
environment exploratory
4
exploratory chip-seq
4
analysis
4
data analysis
4

Similar Publications

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic features. Over the past 15 years, edgeR has been a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count data with replicates and the use of generalized linear models to analyze complex experimental designs.

View Article and Find Full Text PDF

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized.

View Article and Find Full Text PDF

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.

Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.

View Article and Find Full Text PDF

EpiMapper: A new tool for analyzing high-throughput sequencing from CUT&Tag.

Comput Biol Med

January 2025

Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway; Medical Division (EpiGen), Akershus University Hospital, Lørenskog, Norway. Electronic address:

Since the invention of next-generation sequencing, new methods have been developed to understand the regulation of gene expression through epigenetic markers. Among these, CUT&Tag (Cleavage Under Targets and Tagmentation) analysis has emerged as an efficient epigenomic profiling technique with low input requirements, high sensitivity, and low background signals. Although wet-lab techniques are available, data analysis remains challenging for scientists without expert-level computational skills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!