Objectives: This in vitro study compared the remineralization effect on white spot lesions of casein phosphopeptide-amorphous calcium phosphate crème, or CPP-ACP (MI Paste™), 1.1% NaF dentifrice containing 5000ppm of fluoride (ControlRX™), or CPP-ACP crème with 900ppm of fluoride (MI Paste Plus™) with that of a control.
Methods: Artificial white spot lesions were created on smooth enamel surfaces of sound molars using a previously reported demineralization model. Specimens were randomly assigned to four treatments (n=35) with a pH-cycling model over 30 days: Control (no treatment); MI Paste (10% CPP-ACP crème); F5000 (1.1% NaF dentifrice); or MI Paste Plus (10% CPP-ACP plus 900ppm fluoride crème). Products were applied following manufacturers' directions. Changes in mean lesion depth expressed by percent fluorescence loss (ΔF%), and lesion area (mm(2)) from baseline to after treatment were measured with light-induced fluorescence (QLF). Mean values of each parameter were compared between groups (p<0.05).
Results: The remineralization pattern for the F5000 group was unique with marked initial remineralization during the first 10 days and little subsequent change. Based on mean lesion area, the F5000 demonstrated greater remineralization than Control, MI Paste and MI Paste Plus groups. Based on mean fluorescence loss, the F5000 group showed improved remineralization relative to MI Paste Plus, but did not differ statistically from the Control at the end of 30 days.
Conclusions: The 1.1% NaF dentifrice demonstrated overall greater remineralization ability than 10% CPP-ACP crème. However, the 1.1% NaF dentifrice was only as effective as the Control to reduce fluorescence loss.
Clinical Significance: This study showed that a 1.1% NaF dentifrice (5000ppm) demonstrated greater remineralization ability than the CPP-ACP topical tooth crème and that the addition of fluoride to its formulation seems to enhance remineralization. Saliva also has the ability to exert an important remineralization effect over time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551488 | PMC |
http://dx.doi.org/10.1016/j.jdent.2014.09.004 | DOI Listing |
Plant Dis
January 2025
Guangxi Academy of Agricultural Sciences, Institute of plant protection, 174, daxuedong road, nanning, Guangxi, Nanning, Guangxi, China, X2ogGBuM.
Hymenocallis littoralis (Jacq.) Salisb. is a secondary protected plant in China with high ornamental value (Nadaf et al.
View Article and Find Full Text PDFPlant Dis
January 2025
Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;
During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS , Ithaca, United States.
Cureus
January 2025
Dental Public Health, University College London, London, GBR.
Minimally invasive dentistry (MID) has revolutionized pediatric dental care by emphasizing the preservation of healthy tooth structures, reducing treatment-related trauma, and improving patient compliance. This narrative review explores advancements in MID techniques, including silver diamine fluoride (SDF), resin infiltration, atraumatic restorative treatment (ART), bioactive materials, laser-assisted therapies, and three-dimensional (3D) printing technologies. These approaches prioritize early diagnosis, prevention, and conservative management, aligning with patient-centered and sustainable practices.
View Article and Find Full Text PDFFront Vet Sci
December 2024
State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China.
is a common bacterial pathogen in aquaculture, often leading to visceral white spot disease in large yellow croakers (). Previous studies have found that certain aptamers show an efficient antibacterial effect against this pathogen. In this study, we analyzed the transcriptome of to get insights into the antibacterial and inhibitions mechanisms following exposure to the aptamer B4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!