The aim of the present project was to prepare triamcinolone acetonide nanofibers and nanobeads with prolonged anti-inflammatory activity. Triamcinolone acetonide-loaded PLGA nanoformulations were prepared by electrospraying method. The physicochemical and morphological properties of the fabricated nanoparticles were characterized as well. In vitro drug release of the prepared formulations was also studied. Differential scanning calorimetry and X-ray powder diffractometery showed that drug crystallinity was notably decreased during the electrospraying process. In vitro dissolution tests verified that the pure drug and physical mixtures had faster drug release pattern compared to the nanoformulations. Electrosprayed samples with the drug:polymer ratio of 1:10 revealed slower release profiles compared to those with a 1:5 ratio. Results obtained from SEM images of the prepared formulations indicated that polymer solution concentration was the critical parameter in the formation of fibers or beads; so that, fiber formation was increased proportionally with increasing polymer concentration. Moreover, the size of obtained nanostructures was also increased in order of polymer concentrations. As a final point, electrosprayed triamcinolone-loaded biodegradable micro/nanofibers and nanobeads with modified physicochemical characteristics and sustained drug release profiles were successfully prepared via simple, one-step and cost effective electrospraying technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.09.019DOI Listing

Publication Analysis

Top Keywords

drug release
12
nanofibers nanobeads
8
prepared formulations
8
release profiles
8
drug
5
application electrospraying
4
electrospraying one-step
4
one-step method
4
method fabrication
4
fabrication triamcinolone
4

Similar Publications

Resistant hypertension is defined as office blood pressure >140/90 mm Hg with a mean 24-hour ambulatory blood pressure of >130/80 mm Hg in patients who are compliant with 3 or more antihypertensive medications. Those who persistently fail pharmaceutical therapy may benefit from interventional treatment, such as renal denervation. Sympathetic nervous activity in the kidney is a known contributor to increased blood pressure because it results in efferent and afferent arteriole vasoconstriction, reduced renal blood flow, increased sodium and water reabsorption, and the release of renin.

View Article and Find Full Text PDF

Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.

View Article and Find Full Text PDF

New treatments for glaucoma.

Curr Opin Ophthalmol

January 2025

New York Eye Surgery Center, New York City, New York, USA.

Purpose Of Review: This review highlights new Federal Drug Administration (FDA) approved glaucoma treatments to familiarize providers with immediately available options.

Recent Findings: New FDA-approved treatments include the bimatoprost implant, travoprost implant, direct selective laser trabeculoplasty (DSLT), and ocular pressure adjusting pump. The bimatoprost implant is approved for a single administration with effects lasting for about 1 year, as opposed to the nearly 3-year effect for the travoprost implant.

View Article and Find Full Text PDF

Synthesis and Application of a Novel Multifunctional Nanoprodrug for Synergistic Chemotherapy and Phototherapy with Hydrogen Sulfide Gas.

J Med Chem

January 2025

Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China.

With the dilemma of limited efficacy of individual therapies, it is crucial to develop innovative combination therapy systems to target the complex pathogenesis of cancer. In this study, we designed a nanoprodrug ISL@MIL-101-ADT to facilitate synergistic delivery of hydrogen sulfide (HS) and prodrug ISL for specific eradication of tumor cells with minimal toxicity and maximal efficacy. The nanoprodrug passively targeted tumors through enhanced permeation and retention effects, followed by disintegration and release of IR780, lonidamine (LND), and HS.

View Article and Find Full Text PDF

Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!