CO2 reduction catalyzed by mercaptopteridine on glassy carbon.

J Am Chem Soc

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.

Published: October 2014

The catalytic reduction of CO2 is of great current interest because of its role in climate change and the energy cycle. We report a pterin electrocatalyst, 6,7-dimethyl-4-hydroxy-2-mercaptopteridine (PTE), that catalyzes the reduction of CO2 and formic acid on a glassy carbon electrode. Pterins are natural cofactors for a wide range of enzymes, functioning as redox mediators and C1 carriers, but they have not been exploited as electrocatalysts. Bulk electrolysis of a saturated CO2 solution in the presence of the PTE catalyst produces methanol, as confirmed by gas chromatography and (13)C NMR spectroscopy, with a Faradaic efficiency of 10-23%. FTIR spectroelectrochemistry detected a progression of two-electron reduction products during bulk electrolysis, including formate, aqueous formaldehyde, and methanol. A transient intermediate was also detected by FTIR and tentatively assigned as a PTE carbamate. The results demonstrate that PTE catalyzes the reduction of CO2 at low overpotential and without the involvement of any metal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5081103DOI Listing

Publication Analysis

Top Keywords

reduction co2
12
glassy carbon
8
pte catalyzes
8
catalyzes reduction
8
bulk electrolysis
8
co2
5
co2 reduction
4
reduction catalyzed
4
catalyzed mercaptopteridine
4
mercaptopteridine glassy
4

Similar Publications

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

This study intends to optimize the carbon footprint management model of power enterprises through artificial intelligence (AI) technology to help the scientific formulation of carbon emission reduction strategies. Firstly, a carbon footprint calculation model based on big data and AI is established, and then machine learning algorithm is used to deeply mine the carbon emission data of power enterprises to identify the main influencing factors and emission reduction opportunities. Finally, the driver-state-response (DSR) model is used to evaluate the carbon audit of the power industry and comprehensively analyze the effect of carbon emission reduction.

View Article and Find Full Text PDF

Emerging frontiers of nickel-aluminium layered double hydroxide heterojunctions for photocatalysis.

Dalton Trans

January 2025

National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The unique benefits of nickel-aluminium layered double hydroxide (Ni-Al LDH)-based heterojunctions, including large surface area, tunable bandgap and morphology, abundant reaction sites, and high activity, selectivity, and photostability, make them extremely promising for photocatalytic applications. Given the importance and benefits of Ni-Al LDH-based heterojunctions in photocatalysis, it is necessary to provide a summary of Ni-Al LDH-based heterojunctions for photocatalytic applications. Hence, in this review, we thoroughly described the material design for Ni-Al LDH-based heterojunctions, along with their recent developments in various photocatalytic applications, , H evolution, CO reduction, and pollutant removal.

View Article and Find Full Text PDF

Construction of ternary heterojunction photocatalyst CuCl(OH)/In/InO for boosted photocatalytic CO reduction performance.

Dalton Trans

January 2025

College of Life Sciences, School of Chemical Engineering, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang 330022, China.

The photocatalytic conversion of CO and HO into useful chemicals or fuels over semiconductor photocatalysts is regarded as a promising technology to address the problems of global warming and energy exhaustion. However, inefficient photo-absorption and slow charge dynamics limit the CO photoreduction efficiency. Here, a ternary heterojunction photocatalyst, CuCl(OH)/In/InO (Cu H IO), with an intimate interface is obtained a hydrogen chemical reduction approach followed by hydrolysis reaction, where In species can be produced on the surface of InO from the hydrogen chemical reaction with a calcining temperature of over 500 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!