The symbiotic relationships between bacteria of the genus Wolbachia (order Rickettsiales) and their arthropod hosts are diverse and can range from mutualism to parasitism. Whereas effects of Wolbachia on host biology are well investigated, little is known about diversity and abundance of Wolbachia in their natural hosts. The phloem-feeding Asian citrus psyllid, Diaphorina citri (Kuwayama) (Hemiptera: Liviidae), is naturally infected with Wolbachia (wDi). In the current study, we calculated the within-host density of Wolbachia in Florida D. citri populations using quantitative polymerase chain reaction for detection of the Wolbachia outer surface protein gene, wsp. Gene quantities were normalized to the D. citri wingless gene (Wg) to estimate Wolbachia abundance in individual D. citri. Using this method, significant geographic differences in Wolbachia densities were detected among Florida D. citri populations, with higher infection levels occurring in male versus female hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/EN14193 | DOI Listing |
Bull Entomol Res
January 2025
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia.
The effect of on the viability and antimicrobial activity of the ectoparasitoid was evaluated in laboratory experiments. Two lines of the parasitoid, -infected (W+) and -free (W-), were used. Parasitoid larvae were fed with a host orally infected with a sublethal dose of (Bt) and on the host uninfected with Bt.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.
View Article and Find Full Text PDFInsects
December 2024
Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce abundance, and the Stri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in . A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Forestry, Central South University of Forestry and Technology, Changsha, China.
Introduction: Phage WO represents the sole bacteriophage identified to infect , exerting a range of impacts on the ecological dynamics and evolutionary trajectories of its host. Given the extensive prevalence of across various species, phage WO is likely among the most prolific phage lineages within arthropod populations. To examine the diversity and evolutionary dynamics of phage WO, we conducted a screening for the presence of phage WO in -infected cricket species from China.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche CYROI, Ste Clotilde, France.
The bacterium is increasingly studied for its potential use in controlling insect vectors or pests due to its ability to induce Cytoplasmic Incompatibility (CI). CI can be exploited by establishing an opportunistic infection in a targeted insect species through trans-infection and then releasing the infected males into the environment as sterilizing agents. Several host life history traits (LHT) have been reported to be negatively affected by artificial infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!