Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Upon excitation at 170-240 nm, diamonds emit strong luminescence in wavelength range of 300-700 nm. The spectral features observed in the photoluminescence excitation (PLE) spectra show two vibrational progressions, A and B, related to nitrogen defects N2 and N4, respectively. We used PLE spectra excited in region 170-240 nm to identify the type of diamond and demonstrate quantitative analysis of the B center as a N4 nitrogen defect in diamonds; the least detectable concentration of the N4 nitrogen defect is about 13 ppb, and the sensitivity of PLE is about 30 times than that practicable with infrared absorption spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac503268q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!