On the basis of X-ray diffraction and mass spectrometric analysis of carrier γ-Al2O3 and catalysts CuCl2/CuCl on its surface, the chemical structure of the active centers of two types oxidative chlorination catalysts applied and permeated type of industrial brands "Harshow" and "MEDС-B" was investigated. On the basis of quantum-mechanical theory of the crystal, field complexes were detected by the presence of CuCl2 cation stoichiometry and structure of the proposed model crystal quasichemical industrial catalyst permeated type MEDС-B for oxidative chlorination of ethylene. On the basis of quantum-mechanical calculations, we propose a new mechanism of catalysis crystal quasichemical oxidative chlorination of ethylene reaction for the catalysts of this type (MEDС-B) and confirmed the possibility of such a mechanism after the analysis of mass spectrometric studies of the active phase (H2 [CuCl4]) catalyst oxidative chlorination of ethylene. The possibility of the formation of atomic and molecular chlorine on the oxidative chlorination of ethylene catalyst surface during Deacon reaction was displaying, which may react with ethylene to produce 1,2-dichloroethane. For the active phase (H [CuCl2]), catalyst offered another model of the metal complex catalyst oxidative chlorination of ethylene deposited type (firm 'Harshow,' USA) and the mechanism of catalysis of oxidative chlorination of ethylene with this catalyst.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164119 | PMC |
http://dx.doi.org/10.1186/1556-276X-9-357 | DOI Listing |
Inorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Center for Humanitarian Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.
Background: Cholera outbreaks are surging worldwide. Growing research supports case-area targeted interventions (CATIs), whereby teams provide a package of interventions to case and neighboring households, as an effective strategy in cholera outbreak control, particularly in humanitarian settings. While research exists on individual CATI interventions, research gaps exist on outcomes of integrated interventions during CATI responses.
View Article and Find Full Text PDFThe selective amination of aromatic C-H bonds is a powerful strategy to access aryl amines, functionalities found in many pharmaceuticals and agrochemicals. Despite advances in the field, a platform for the direct, selective C-H amination of electronically diverse (hetero)arenes, particularly electron-deficient (hetero)arenes, remains an unaddressed fundamental challenge. In addition, many (hetero)arenes present difficulty in common selective pre-functionalization reactions, such as halogenation , or metal-catalyzed borylation and silylation .
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Langenau, Germany.
Monitoring of genotoxic chemicals released into the water cycle or formed through transformation processes is critical to prevent harm to human health. The development of the high-performance thin-layer chromatography (HPTLC)-umu bioassay combines sample separation and detection of genotoxic substances in the low ng/L concentration range. In this study, raw, process, and drinking water samples from 11 different waterworks in Germany were analyzed using the HPTLC-umu.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Sciences, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland.
Dichlorobenzene is beneficial to industries, however, the release of this compound into the environment causes significant damage to ecosystems and human health, as it exhibits resistance to biodegradation. Here, we show that chlorophenol and resorcinol are synthesized from 1,3-dichlorobenzene in a water ice environment (1) directly on a poly-crystalline gold surface and (2) after low-energy (<12 eV) electron irradiation of admixture films. For the latter, at energies below 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!