Fatty acids (FAs) stimulate the secretion of gastrointestinal hormones, including cholecystokinin (CCK) and glucagon like peptide-1 (GLP-1), which suppress energy intake. In obesity, gastrointestinal responses to FAs are attenuated. Recent studies have identified a key role for the FA-sensing receptors cluster of differentiation (CD)36, G protein-coupled receptor (GPR)40, GPR120, and GPR119 in mediating gastrointestinal hormone secretion. This study aimed to determine the expression and localization of these receptors in the duodenum of humans and to examine relationships with obesity. Duodenal mucosal biopsies were collected from nine lean [body mass index (BMI): 22 ± 1 kg/m2], six overweight (BMI: 28 ± 1 kg/m2), and seven obese (BMI: 49 ± 5 kg/m2) participants. Absolute levels of receptor transcripts were quantified using RT-PCR, while immunohistochemistry was used for localization. Transcripts were expressed in the duodenum of lean, overweight, and obese individuals with abundance of CD36>>GPR40>GPR120>GPR119. Expression levels of GPR120 (r = 0.46, P = 0.03) and CD36 (r = 0.69, P = 0.0004) were directly correlated with BMI. There was an inverse correlation between expression of GPR119 with BMI (r2 = 0.26, P = 0.016). Immunolabeling studies localized CD36 to the brush border membrane of the duodenal mucosa and GPR40, GPR120, and GPR119 to enteroendocrine cells. The number of cells immunolabeled with CCK (r = -0.54, P = 0.03) and GLP-1 (r = -0.49, P = 0.045) was inversely correlated with BMI, such that duodenal CCK and GLP-1 cell density decreased with increasing BMI. In conclusion, CD36, GPR40, GPR120, and GPR119 are expressed in the human duodenum. Transcript levels of duodenal FA receptors and enteroendocrine cell density are altered with increasing BMI, suggesting that these changes may underlie decreased gastrointestinal hormone responses to fat and impaired energy intake regulation in obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00134.2014 | DOI Listing |
Curr Issues Mol Biol
January 2025
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Chronic pain is a debilitating condition affecting millions worldwide, often resulting from complex interactions between the nervous and immune systems. Recent advances highlight the critical role of metabolite-sensing G protein-coupled receptors (GPCRs) in various chronic pain types. These receptors link metabolic changes with cellular responses, influencing inflammatory and degenerative processes.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:
The physiological functions of various fatty acid-originating metabolites from foods and fermented products remained mostly untouched. Thereby, this study examined the biological activities of hydroxy fatty acids as agonists of G protein-coupled receptors (i.e.
View Article and Find Full Text PDFBiomed Pharmacother
November 2024
Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland.
Commensal microbiota is crucial for nutrient digestion and production of biologically active molecules, many of which mimic endogenous ligands of human GPCRs. Bacteroides spp. are among the most abundant bacteria residing in the human gut and their absence has been positively correlated with metabolic disorders.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
G protein-coupled receptor (GPR)40 and GPR120 are receptors for medium- and long-chain free fatty acids. It has been well documented that GPR40 and GPR120 activation improves metabolic syndrome (MetS) and exerts anti-inflammatory effects. Since chronic periodontitis is a common oral inflammatory disease initiated by periodontal pathogens and exacerbated by MetS, we determined if GPR40 and GPR120 activation with agonists improves MetS-associated periodontitis in animal models in this study.
View Article and Find Full Text PDFPflugers Arch
October 2024
Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland.
Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O tension than at the base of the crypts, which leads to hypoxia in L-cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!