Background: Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty.
Methods: A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemi-pelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method,
Results: Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute.
Conclusions: Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcs.1619 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!