Applicability of new degradable hypericin-polymer-conjugates as photosensitizers: principal mode of action demonstrated by in vitro models.

Photochem Photobiol Sci

Division of Molecular Tumor Biology, Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.

Published: November 2014

Two series of water soluble novel conjugates of the photosensitizer hypericin were prepared and evaluated for their use as agents for photodynamic therapy, with covalently and non-covalently loaded hypericin on functionalised, hydrolytically degradable inorganic-organic hybrid polyphosphazenes. The conjugates showed excellent aqueous solubility and similar fluorescence spectra to pristine hypericin. Detailed in vitro investigations revealed that the substances were non-toxic in the dark over a wide concentration range, but displayed phototoxicity upon irradiation. Cell uptake studies showed rapid uptake with localization of hypericin observed in endoplasmic reticulum, Golgi complex and particularly in the lysosomes. Furthermore, a DNA fragmentation assay revealed that the photosensitizer conjugates are efficient inducers of apoptosis with some tumor cell selectivity caused by faster and enhanced accumulation in A431 than in HaCaT cells, and thus a moderately higher phototoxicity of A431 compared to HaCaT cells. These novel photosensitizer conjugates hence represent viable hydrolytically degradable alternatives for the advanced delivery of hypericin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4pp00251bDOI Listing

Publication Analysis

Top Keywords

hydrolytically degradable
8
photosensitizer conjugates
8
hacat cells
8
hypericin
5
applicability degradable
4
degradable hypericin-polymer-conjugates
4
hypericin-polymer-conjugates photosensitizers
4
photosensitizers principal
4
principal mode
4
mode action
4

Similar Publications

Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts.

Biochim Biophys Acta Mol Cell Res

January 2025

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea. Electronic address:

Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S.

View Article and Find Full Text PDF

Photo-enhanced UiO-66/Au Nanoparticles with High Phosphatase-Like Activity for Rapid Degradation and Detection of Paraoxon.

Small

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

The severe environmental and human health hazards posed by organophosphorus compounds underscore the pressing need for advancements in their degradation and detection. However, practical implementation is impeded by prolonged degradation durations and limited efficiency. Herein, an effective interfacial modification approach is proposed involving the integration of photoactive Au nanoparticles (NPs) onto metal-organic frameworks, resulting in the synthesis of UiO-66/Au NPs exhibiting enhanced hydrolysis activity under light excitation.

View Article and Find Full Text PDF

Structural analysis of human ADAR2-RNA complexes by X-ray crystallography.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:

Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.

View Article and Find Full Text PDF

Structural features of dioxane lignin: A comparative study with milled wood and formaldehyde-stabilized lignins.

Int J Biol Macromol

January 2025

Core Facility Center "Arktika", Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russian Federation. Electronic address:

Dioxane lignin (DL) is isolated from plant material under mild acidolysis conditions and is widely used in many studies as a representative sample of protolignin, an alternative to milled wood lignin (MWL). However, the structural changes caused by hydrolytic degradation reactions during DL extraction are still poorly understood. In this work, an integrated approach based on 2D NMR and high-resolution mass spectrometry was used to establish the features of the lignin structure on the example of pine lignin isolated using dioxane under various conditions: MWL, DL and "formaldehyde stabilized" lignin (LSF).

View Article and Find Full Text PDF

This article presents the characteristics of composites comprising polylactide combined with iron powder, from 1 to 10 wt.%, and nanoiron powders with a mass fraction from 0.1 to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!