The purpose of this study was to elucidate the effect of acute aerobic exercise performed under hypoxic conditions on flow-mediated dilation (FMD) in the inactive limb. Seven males participated in the study. The subjects performed two submaximal leg cycling on a semirecumbent ergometer at the same relative intensity (60% peak oxygen uptake) in normoxia [inspired oxygen fraction (FIO2) = 0·21] and hypoxia (FIO2 = 0·12-0·13) for 30 min. The brachial artery diameter and blood velocity during exercise were measured via ultrasound, and the antegrade and retrograde shear rates were calculated. Before and 5, 30 and 60 min after exercise, brachial artery FMD was measured in normoxia. FMD was estimated as the percentage increase in peak diameter from the baseline diameter at prior occlusion (%FMD) and as the controlling changes in baseline diameter (the corrected-%FMD). No difference in antegrade shear rate during exercise was detected between the normoxic and hypoxic conditions, whereas the retrograde shear rate was larger during hypoxic exercise. The %FMD decreased significantly at 5 min after exercise in both normoxia and hypoxia, and it returned to pre-exercise levels within 60 min of recovery. Significant decreases in FMD at 5 min after exercise had disappeared when the baseline diameter was controlled using an analysis of covariance (the corrected-%FMD). No significant differences were observed between the normoxic and hypoxic trials in the %FMD and corrected-%FMD following exercise. These results suggest that hypoxia has no impact on endothelial function in the inactive limb following acute aerobic exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cpf.12194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!