N-alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra- and intermolecular hydrogen bonds that leads to cavitand-like structures. Depending on the upper-rim substituents, self-inclusion was observed in solution and in the solid state. The self-inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self-included dimers spontaneously reorganize to 1:1 host-guest complexes. These host compounds show an interesting ability to bind a series of N-alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C=O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl(-)) and ammonium (NH2(+)) cations of the hosts, and also through CH⋅⋅⋅π interactions between the hosts and guests. The self-included and host-guest complexes were studied by single-crystal X-ray diffraction, NMR titration, and mass spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201402533 | DOI Listing |
ACS Appl Mater Interfaces
October 2024
Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
Thermoplastic polyurethanes (TPUs) are one of the most appealing materials with extensive applications in biomedical fields due to their versatile mechanical properties and excellent biocompatibility. In response to the escalating challenges of bacterial infections, it is desirable to obtain TPUs with intrinsic antibacterial activity, particularly for application in biomedical devices and public places. Herein, a cationic main-/side-chain structure regulation strategy in the TPU hard segment was adopted to introduce and optimize the antibacterial activity.
View Article and Find Full Text PDFACS Omega
September 2024
Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 15 Akadeemia Road, 12618 Tallinn, Estonia.
The ongoing demand for effective antimicrobial materials persists, and lignin emerges as a promising natural antibacterial material with renewable properties. The adaptability of lignin to various chemical modifications offers avenues to enhance its antimicrobial activity. Here, we employed chloromethylation and subsequent functionalization with variable tertiary alkyl dimethyl amines to produce C6-C18 quaternary ammonium lignins (QALs) from hardwood (aspen), softwood (pine), and grass (barley straw).
View Article and Find Full Text PDFChem Asian J
November 2024
Department of Chemistry, Università degli Studi di Milano and CNR-SCITEC, Via Golgi 19, 20133, Milano, Italy.
2,5-disubstituted N,N'-alkylpiperazines represent an interesting target in organic synthesis both for pharmaceutical or agrochemical applications and as a promising class of ligands in coordination chemistry. We report here a microwave-enhanced synthesis of these compounds starting from non-activated N-alkyl aziridines in the presence of catalytic amounts of simple ammonium metallates. A remarkable TOF of 2787.
View Article and Find Full Text PDFMolecules
June 2024
Taiyuan Hengdeyuan Animal Protection Technology Development Co., Ltd., Taiyuan 030003, China.
Amidation of lactobionic acid with N,N-dimethylaminopropyltriamine was conducted to obtain N-(3'-dimethylaminopropyl)-lactamido-3-aminopropane (DDLPD), which was quaternized with bromoalkanes of different carbon chain lengths to synthesize double-stranded lactosylamide quaternary ammonium salt N-[N'[3-(lactosylamide)]propyl-N'-alkyl] propyl-N,N-dimethyl-N-alkylammonium bromide (CDDLPB, n = 8, 10, 12, 14, 16). The surface activity and the adsorption and aggregation behaviors of the surfactants were investigated via equilibrium surface tension, dynamic light scattering, and cryo-electron microscopy measurements in an aqueous solution. The application properties of the products in terms of wettability, emulsification, foam properties, antistatic, salt resistance, and bacteriostatic properties were tested.
View Article and Find Full Text PDFOrg Lett
March 2024
Department of Chemistry, Xihua University, Chengdu 610039, P. R. China.
Reductive radical dearomatization -alkyl quinoline quaternary ammonium salts to synthesize structurally complex and challenging polysubstituted benzo[][1,3]oxazocines was first reported. The mechanism showed various allyl alcohols can be converted into alkyl radicals under reduction conditions of iron/silane. These radicals then nucleophilically attack the C4 site of -alkyl quinoline quaternary ammonium salts, and intramolecular cyclization of the resulting intermediate generates the target product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!