Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells.

Biotechnol Lett

State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.

Published: January 2015

A multi-walled, carbon nanotube (MWNT)-modified graphite felt (GF) cathode was fabricated to improve the performance of sediment microbial fuel cells (SMFC). Three types of MWNT-modified GF cathodes were prepared by different electrophoretic deposition (EPD) times. Maximum power density of SMFC with MWNT-GF*** cathode at 60 min EPD was 215 ± 9.9 mW m(-2). This was 1.6 times that of SMFC with a bare GF cathode. Cyclic voltammetry and the amount of biomass showed that biomass density and electrochemical activity increased as the electrophoretic deposition time extended. Therefore the electrode possesses the highest catalytic behavior toward O2 reduction reaction. This simple process of carbon nanotube modification of a cathode by EPD can serve as an effective technique to improve the performance of SMFC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-014-1671-6DOI Listing

Publication Analysis

Top Keywords

carbon nanotube
12
electrophoretic deposition
12
performance sediment
8
sediment microbial
8
microbial fuel
8
fuel cells
8
improve performance
8
cathode
5
nanotube modified
4
modified cathode
4

Similar Publications

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.

View Article and Find Full Text PDF

Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.

View Article and Find Full Text PDF

Currently, the development of suitable transition metal chalcogenides (TMDs) for aqueous zinc ion batteries (AZIBs) is plagued by the terrible conductivity and electrochemical properties. Herein, a one-step ball milling method is applied to enhance the conductivity of commercial MnTe cathode by constructing three dimensional (3D) carbon nanotubes (CNTs) interweaved MnTe nanoparticles (abbreviated as MnTe@CNTs), which can achieve ultrafast ion conduction. The stable electrochemistry properties benefit from the synergistic effects between layered MnTe and 3D CNTs, which can improve the electrons/ions diffusion kinetics as cycling.

View Article and Find Full Text PDF

Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac.

J Chem Phys

January 2025

Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.

Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!