Pharmacological modulation of tumor radiosensitivity is a promising strategy for enhancing the outcome of radiotherapy. cAMP signaling plays an essential role in modulating the proliferation and apoptosis of different cell types, including cancer cells. Until now, the regulation of this pathway was restricted to the transmembrane class of adenylyl cyclases. In the present study, the role of an alternative source of cAMP, the intracellular localized soluble adenylyl cyclase (sAC), in the radiosensitivity of prostate cancer cells was investigated. Pharmacological inhibition of sAC activity led to marked suppression of proliferation, lactate dehydrogenase release, and induction of apoptosis. The combination of ionizing radiation with partial suppression of sAC activity (~50%) immediately after irradiation synergistically inhibited proliferation and induced apoptosis. Overexpression of sAC in normal prostate epithelial PNT2 cells increased the cAMP content and accelerated cell proliferation under control conditions. The effects of radiation were significantly reduced in transformed PNT2 cells compared with control cells. Analysis of the underlying cellular mechanisms of sAC-induced radioresistance revealed the sAC-dependent activation of B-Raf/ERK1/2 signaling. In agreement with this finding, inhibition of ERK1/2 in prostate cancer cells enhanced the cytotoxic effect of irradiation. In conclusion, the present study suggests that sAC-dependent signaling plays an important role in the radioresistance of prostate cancer cells. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2014.09.008 | DOI Listing |
Clin J Gastroenterol
December 2024
Department of Diagnostic Pathology, National Hospital Organization Shizuoka Medical Center, 762-1 Nagasawa, Shimizu, Sunto District, Shizuoka, 411-0904, Japan.
Surgical resection is the only curative treatment for cholangiocarcinoma, but it is often diagnosed at advanced stages, making surgical resection infeasible. Recently, the concept of conversion surgery has expanded the indications for surgical treatment, thanks to advancements in both perioperative management and chemotherapy. However, it remains unclear which patients benefit most from this treatment strategy.
View Article and Find Full Text PDFDaru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
ACS Nano
December 2024
Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China.
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!