Inhibition of soluble adenylyl cyclase increases the radiosensitivity of prostate cancer cells.

Biochim Biophys Acta

Department of Clinical Pharmacology, Ruhr-University Bochum, Germany; Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, Berlin, Germany. Electronic address:

Published: December 2014

Pharmacological modulation of tumor radiosensitivity is a promising strategy for enhancing the outcome of radiotherapy. cAMP signaling plays an essential role in modulating the proliferation and apoptosis of different cell types, including cancer cells. Until now, the regulation of this pathway was restricted to the transmembrane class of adenylyl cyclases. In the present study, the role of an alternative source of cAMP, the intracellular localized soluble adenylyl cyclase (sAC), in the radiosensitivity of prostate cancer cells was investigated. Pharmacological inhibition of sAC activity led to marked suppression of proliferation, lactate dehydrogenase release, and induction of apoptosis. The combination of ionizing radiation with partial suppression of sAC activity (~50%) immediately after irradiation synergistically inhibited proliferation and induced apoptosis. Overexpression of sAC in normal prostate epithelial PNT2 cells increased the cAMP content and accelerated cell proliferation under control conditions. The effects of radiation were significantly reduced in transformed PNT2 cells compared with control cells. Analysis of the underlying cellular mechanisms of sAC-induced radioresistance revealed the sAC-dependent activation of B-Raf/ERK1/2 signaling. In agreement with this finding, inhibition of ERK1/2 in prostate cancer cells enhanced the cytotoxic effect of irradiation. In conclusion, the present study suggests that sAC-dependent signaling plays an important role in the radioresistance of prostate cancer cells. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2014.09.008DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
prostate cancer
16
soluble adenylyl
12
adenylyl cyclase
12
radiosensitivity prostate
8
cells
8
signaling plays
8
sac activity
8
pnt2 cells
8
prostate
5

Similar Publications

Surgical resection is the only curative treatment for cholangiocarcinoma, but it is often diagnosed at advanced stages, making surgical resection infeasible. Recently, the concept of conversion surgery has expanded the indications for surgical treatment, thanks to advancements in both perioperative management and chemotherapy. However, it remains unclear which patients benefit most from this treatment strategy.

View Article and Find Full Text PDF

Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.

Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.

View Article and Find Full Text PDF

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!