[Discussion on the treatment methods of pediatric obstructive sleep apnea hypopnea syndrome].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

Department of Otorhinolaryngology, Fuzhou Children's Hospital of Fujian Province, Teaching Hospital of Fujian Medical University, Fuzhou 350005, China.

Published: July 2014

AI Article Synopsis

  • - The study aimed to investigate different treatment methods for pediatric obstructive sleep apnea hypopnea syndrome (OSAHS) in children through a sample of 386 participants over a period from June 2008 to April 2011.
  • - Treatment options included drug therapy (like antibiotics and nasal sprays), conservative treatments with drug therapy and sputum aspiration, and surgical procedures like coblation adenotonsillectomy, with various subgroups receiving tailored approaches.
  • - Results showed that the size of adenoids and tonsils in subgroup A2 decreased significantly after treatment, while subgroup A1 did not show improvements, and nasal examination scores improved for A2, but A1 experienced a rebound in symptoms by 6 months.

Article Abstract

Objective: To explore the treatment methods of pediatric obstructive sleep apnea hypopnea syndrome (OSAHS).

Methods: A total of 386 children with OSAHS were enrolled from June 2008 to April 2011.Ninety children with adenoid and tonsil ≤ degree III (group A) were randomly divided into A1 subgroup and A2 subgroup, while 22 of 296 (group B) children aged less than 3 years old with degree IV adenoid and(or) tonsil were divided into B1 subgroup, and the other 274 of 296 children with degree IV adenoid and (or) tonsil were divided into B1 subgroup, B2 subgroup and B3 subgroup. The adenoid, tonsil size examination and nasal endoscopic examination scores were performed before treatment, 3 months and 6 months after treatment. Drug therapy included oral antibiotics, mometasone furoate as a nasal spray, leukotriene receptor antagonist (LTRAs), mucoactive medications. Conservative treatment meant drug therapy plus negative pressure of sputum aspiration.Surgical treatment meant coblation adenotonsillectomy. A1 subgroup received drug therapy for 3 months; A2 and B1 subgroup received conservative treatment for 3 months; B2 subgroup received coblation adenotonsillectomy after 3 days conservative treatment and postoperative drug therapy for 2 weeks; B3 subgroup received coblation adenotonsillectomy after 2 weeks conservative treatment and postoperative drug therapy for 3 months.

Results: The adenoid and tonsil size of A2 subgroup decreased at 3 months after treatment (Wald χ² were 10.584 and 8.366, respectively, P < 0.05), no significant re-increase was found at 6 months, and no decrease was found in the A1 subgroup (P > 0.05). The nasal endoscopic examination scores decreased in both A1 and A2 subgroup at 3 months after the treatment (F = 403.420, P < 0.05), but it was found re-increase in A1 subgroup at the 6 months (P < 0.05), no significant re-increase was found in the A2 subgroup. The polysomnography (PSG) monitor of A2 subgroup was 100.0% normal at 3 months after treatment, while the A1 subgroup was only 43.2% (χ² = 36.189, P < 0.05). B2 and B3 subgroups cured after coblation adenotonsillectomy, but no decrease of the adenoid and tonsil size was found in B1 subgroup (P > 0.05). The nasal endoscopic examination scores of B1, B2 and B3 subgroups showed significant decrease after the treatment, but re-increase was found in both B1 and B2 subgroups at the 6 months (F = 1 614.244, P < 0.05), no significant re-increase was found in the B3 subgroup. The PSG monitor of B3 subgroup was 100.0% normal at 3 months after treatment, B2 subgroup 73.4%, and B1 subgroup only 57.4% (χ² = 90.846, P < 0.05).

Conclusions: The treatment method of children with OSAHS should be selected according to the age, condition of disease, and size of the adenoid and tonsil. Adenoid and tonsil ≤ degree III should select conservative treatment; while for degree IV adenoid and (or) tonsil, surgical treatment should be primary choice. Conservative treatment can reduce the risk of perioperative and adequate postoperative drug therapy can help prevent recurrence after surgery.

Download full-text PDF

Source

Publication Analysis

Top Keywords

adenoid tonsil
32
drug therapy
24
conservative treatment
24
subgroup
22
months treatment
20
treatment
17
coblation adenotonsillectomy
16
subgroup received
16
005 re-increase
16
divided subgroup
12

Similar Publications

Boosting human immunology: harnessing the potential of immune organoids.

EMBO Mol Med

January 2025

Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils.

View Article and Find Full Text PDF

Objective: This study aims to explore the clinical effects of simultaneous balloon eustachian tuboplasty (BET) in treating chronic secretory otitis media (COME) in children with bilateral tonsil and adenoid hypertrophy (TAH), providing a theoretical basis for the clinical application of BET.

Methods: From January 2023 to January 2024, 30 children diagnosed with COME and bilateral TAH were included in this retrospective study at our hospital. The cohort comprised a total of 55 affected ears.

View Article and Find Full Text PDF

Purpose: This study aims to develop a deep learning methodology for quantitative assessing adenoid hypertrophy in nasopharyngoscopy images and to investigate its correlation with the apnea-hypopnea index (AHI) in pediatric patients with obstructive sleep apnea (OSA).

Patients And Methods: A total of 1642 nasopharyngoscopy images were collected from pediatric patients aged 3 to 12 years. After excluding images with obscured secretions, incomplete adenoid exposure, 1500 images were retained for analysis.

View Article and Find Full Text PDF

Adenoid hypertrophy (AH) is characterized by pathological hyperplasia of the nasopharyngeal tonsils, a component of Waldryer's ring, which represents the first immune defense of the upper respiratory tract. The pathogenic factors contributing to AH remain to be comprehensively investigated to date. Although some studies suggest that environmental exposure to smoke and allergens, respiratory tract infections, and hormonal influences likely contribute to the development of AH, further research is necessary for fully elucidating the effects of these factors on the onset and progression of AH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!