Purpose: To determine if astrocyte processes label for actin and to quantify the orientation of astrocytic processes within the optic nerve head (ONH) in a rat glaucoma model.

Methods: Chronic intraocular pressure (IOP) elevation was produced by episcleral hypertonic saline injection and tissues were collected after 5 weeks. For comparison, eyes with optic nerve transection were collected at 2 weeks. Fellow eyes served as controls. Axonal degeneration in retrobulbar optic nerves was graded on a scale of 1 to 5. Optic nerve head sections (n ≥ 4 eyes per group) were colabeled with phalloidin (actin marker) and antibodies to astrocytic glial fibrillary acidic protein and aquaporin 4, or axonal tubulin βIII. Confocal microscopy and FIJI software were used to quantify the orientation of actin bundles.

Results: Control ONHs showed stereotypically arranged actin bundles within astrocyte processes. Optic nerve head actin bundle orientation was nearly perpendicular to axons (82.9° ± 6.3° relative to axonal axis), unlike the retrobulbar optic nerve (45.4° ± 28.7°, P < 0.05). With IOP elevation, ONH actin bundle orientation became less perpendicular to axons, even in eyes with no perceivable axonal injury (i.e., 38.8° ± 15.1° in grade 1, P < 0.05 in comparison to control ONHs). With severe injury, ONH actin bundle orientation became more parallel to the axonal axis (24.1° ± 28.4°, P < 0.05 in comparison to control ONHs). Optic nerve head actin bundle orientation in transected optic nerves was unchanged.

Conclusions: Actin labeling identifies fine astrocyte processes within the ONH. Optic nerve head astrocyte process reorientation occurs early in response to elevated IOP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215744PMC
http://dx.doi.org/10.1167/iovs.14-14969DOI Listing

Publication Analysis

Top Keywords

optic nerve
32
nerve head
24
astrocyte processes
16
actin bundle
16
bundle orientation
16
control onhs
12
actin
10
optic
10
processes label
8
nerve
8

Similar Publications

Introduction: Papilloedema can be the first sign of life-threatening disease, for example, brain tumours. Due to the potential seriousness of this clinical sign, the detection of papilloedema would normally prompt urgent hospital referral for further investigation. The problem is that many benign structural variations of optic nerve anatomy can be mistaken for papilloedema, so-called pseudopapilloedema.

View Article and Find Full Text PDF

Objective: To evaluate the effects of Fanconi anemia (FA) on retinal and choroidal microvasculature using Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA).

Design: Cohort study with age-matched controls.

Subjects And Participants: This study included 11 eyes from 11 patients diagnosed with FA and 12 eyes from 12 age-matched healthy controls.

View Article and Find Full Text PDF

Gene and phenome-based analysis of the shared genetic architecture of eye diseases.

Am J Hum Genet

January 2025

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:

While many eye disorders are linked through defects in vascularization and optic nerve degeneration, genetic correlation studies have yielded variable results despite shared features. For example, glaucoma and myopia both share optic neuropathy as a feature, but genetic correlation studies demonstrated minimal overlap. By leveraging electronic health record (EHR) resources that contain genetic variables such as genetically predicted gene expression (GPGE), researchers have the potential to improve the identification of shared genetic drivers of disease by incorporating knowledge of shared features to identify disease-causing mechanisms.

View Article and Find Full Text PDF

Prevalence and Clinical Associations of Peripapillary Hyperreflective Ovoid Mass-like Structures in Craniosynostosis.

J Neuroophthalmol

January 2025

Department of Ophthalmology (JGJ-C, TE, Y-HC, LRD, RAG), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Frank H. Netter Medical School (JGJ-C), North Haven, Connecticut; and Department of Anesthesiology (DZ), Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Background: Patients with craniosynostosis are at high risk of developing elevated intracranial pressure (ICP) causing papilledema and secondary optic atrophy. Diagnosing and monitoring optic neuropathy is challenging because of multiple causes of vision loss including exposure keratopathy, amblyopia, and cognitive delays that limit examination. Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are an optical coherence tomography (OCT) finding reported in association with papilledema and optic neuropathy.

View Article and Find Full Text PDF

Normative measurements of the frontal nerve by magnetic resonance imaging in an Australia cohort.

Surg Radiol Anat

January 2025

Department of Ophthalmology & Visual Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.

Purpose: To report the normative dimensions of the frontal nerve (FN) on fat-suppressed suppressed gadolinium (fs-gad) enhanced magnetic resonance imaging (MRI).

Method: A retrospective cohort study of patients who underwent coronal fs-gad T1-weighted MRI. Orbits were excluded if there was unilateral or bilateral pathology of the FN or optic nerve sheath (ONS), incomplete MRI sequences, poor image quality or indiscernible FN on radiological assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!