Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications.

Adv Mater

Institute of Nanoscience and Nanotechnology, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, 730000, China; The Research Institute of Biomedical Nanotechnology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.

Published: November 2014

Lead-free BZT-BCT (0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3) nanowires with a high piezoelectric coefficient are synthesized and nanogenerators (NGs) composed of them are successfully developed. The studied in vitro and in vivo biocompatibility of the NGs shows great potential for their application as in vivo power sources.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201402868DOI Listing

Publication Analysis

Top Keywords

high piezoelectric
8
piezoelectric coefficient
8
05bazr02ti08o3-05ba07ca03tio3 nanowires
8
biocompatible nanogenerators
4
nanogenerators high
4
coefficient 05bazr02ti08o3-05ba07ca03tio3
4
nanowires in-vivo
4
in-vivo applications
4
applications lead-free
4
lead-free bzt-bct
4

Similar Publications

A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot.

Ultrasonics

January 2025

Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK. Electronic address:

A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc.

View Article and Find Full Text PDF

Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials.

View Article and Find Full Text PDF

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Perovskites attract significant attention as a coating material in optical fiber sensing, but challenges remain due to the limited discovery of suitable materials and the high trial-and-error costs, resulting in only a few perovskites being used in optical sensing experiments. Addressing this issue, a novel systematic computational screening strategy for perovskites is established. This strategy is demonstrated to accelerate the discovery of perovskite coating materials that can enhance optical sensing sensitivity.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!