A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of DNA demethylation in experimental encapsulating peritoneal sclerosis. | LitMetric

AI Article Synopsis

  • Encapsulating peritoneal sclerosis (EPS) is a condition characterized by excessive fibrosis in the peritoneum of patients undergoing peritoneal dialysis, eventually resulting in complications like bowel obstruction.
  • The study evaluated the therapeutic effects of DNA demethylation via azacytidine treatment in a rat model of EPS, induced by chlorhexidine gluconate and ethanol, showing improved peritoneal conditions when treated.
  • Key findings included reduced thickness of the peritoneum, decreased levels of pro-fibrotic proteins (like TGF-β and α-SMA), and a reversal of RASAL1 hypermethylation, indicating that demethylation can alleviate EPS-related pathologies.

Article Abstract

Encapsulating peritoneal sclerosis (EPS) involves excessive peritoneal fibrosis in patients on peritoneal dialysis, eventually leading to visceral constriction and bowel obstruction. Few studies have investigated epigenetic mechanisms relating to EPS. Here we evaluated the therapeutic effects of DNA demethylation in experimental EPS. Experimental EPS was induced by intraperitoneal injection of 0.1% chlorhexidine gluconate (CG) and 15% ethanol in non-uremic male Sprague-Dawley (SD) rats. Rats were divided into three groups: group C (N=5) with saline injection only, group CG (N=7) with EPS induction for 4 weeks, and chlorhexidine gluconate and azacytidine (CGA) treated group (N=7) with EPS induction for 4 weeks and 5'-azacytidine injection for the last 2 weeks. Morphometric analysis of peritoneum and immunohistochemical staining for type 1 collagen and α-smooth muscle actin (α-SMA) were performed. Expressions of transforming growth factor-β (TGF-β), fibroblast-specific protein 1 (FSP1), and DNA methyltransferase 1 (DNMT1) were analyzed by Western blot. Methylation-specific polymerase chain reaction (PCR) for Ras GTPase activating-like protein 1 (RASAL1) was performed with measurement of RASAL1 protein expression. Parietal peritoneal thickness and the number of vessels in omental tissue were significantly decreased in group CGA compared to group CG, as were the expressions of type 1 collagen, α-SMA, TGF-β, and FSP1. DNMT1 was significantly increased in group CG, and reduced in group CGA. RASAL1 hypermethylation was associated with decreased RASAL1 protein expression in group CG, which was reversed in group CGA. DNA demethylation by 5'-azacytidine treatment improved pathologic changes of the peritoneum in experimental EPS, and was associated with reversal of increased DNMT1 expression and RASAL1 hypermethylation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-9987.12186DOI Listing

Publication Analysis

Top Keywords

dna demethylation
12
experimental eps
12
group cga
12
group
9
demethylation experimental
8
encapsulating peritoneal
8
peritoneal sclerosis
8
chlorhexidine gluconate
8
group n=7
8
n=7 eps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!