Guar galactomannan from seed of Cyamopsis tetragonolobus was hydrolyzed using acid (HCl), base [Ba(OH)2] and enzyme (mannanase) method to obtain depolymerized substances with possible functional applications as soluble dietary fiber. Rheological behavior of crude, purified, and depolymerized guar gum solutions was studied at 25 °C, using shear stress and dynamic oscillatory measurements, performed with controlled stress rheometer Bohlin CVO (Malvern Instruments) fitted with cone-and-plate geometry. The various guar gums solutions with different viscosities exhibited shear-thinning behavior at high shear rate and Newtonian behavior at low shear rate. At low shear rate, sigma crude guar gum (SCGG), crude guar gum (CGG), acid hydrolyzed guar gum (AHGG) and enzyme hydrolyzed guar gum (EHGG) exhibited viscosities of 18.59, 1.346, 0.149 and 0.022 Pas, respectively. Oscillatory experiments (G", G') of gums solutions showed typical behavior of weak viscoelastic gel. All investigated guar gums were further used for glucose bio-accessibility using a novel in vitro small intestinal model (SIM). All gums solutions resulted in 20% reduction in simulated glucose absorption, indicating a non-significant functionality difference between various guar gums. So, it can be concluded that hydrolyzed guar gums without disturbing their rheological and physiological behavior would be useful for incorporation in various food products as soluble dietary fiber.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2014.09.019DOI Listing

Publication Analysis

Top Keywords

guar gum
20
guar gums
16
gums solutions
12
shear rate
12
hydrolyzed guar
12
guar
11
shear stress
8
soluble dietary
8
dietary fiber
8
low shear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!