Myocardial tissue perfusion remains compromised in 30-40% of patients with ST-segment elevation myocardial infarction (STEMI) despite restored epicardial patency after primary percutaneous coronary intervention (pPCI). This phenomenon is attributed to microvascular dysfunction secondary to numerous pathophysiological mechanisms, including distal embolisation of plaque and thrombus material. Its association with larger post-infarction myocardial necrosis, impaired left ventricular recovery, and worse clinical outcome illustrates the pertinence of a comprehensive armamentarium for the diagnosis, protection and treatment of microvascular dysfunction in STEMI patients. Current strategies to protect the microvasculature during pPCI are based on the assumption that distal embolisation of thrombotic and atheromatous debris is the main mechanism precipitating impaired myocardial tissue perfusion. However, recent findings suggest that this assumption is only true for the border zone of the ischaemic myocardium, whereas the infarct core consists of intramyocardial haemorrhage secondary to microvascular destruction, rather than obstruction. This observation has pertinent implications for contemporary and future adjuvant treatment strategies in STEMI patients. In this review, we provide an overview of the currently available armamentarium to assess the microvasculature, review contemporary strategies in pPCI to protect the myocardium, and discuss novel insights into microvascular pathophysiology that may help guide our focus from the coronary arteries to the microvasculature.

Download full-text PDF

Source
http://dx.doi.org/10.4244/EIJV10STA8DOI Listing

Publication Analysis

Top Keywords

myocardial tissue
8
tissue perfusion
8
microvascular dysfunction
8
distal embolisation
8
stemi patients
8
primary pci
4
pci time
4
time change
4
change focus
4
focus epicardial
4

Similar Publications

Pediatric non-alcoholic fatty liver disease (NAFLD) is emerging as a worldwide health concern with the potential to advance to cirrhosis and liver cancer. NAFLD can also directly contribute to heart problems through inflammation and insulin resistance, even in individuals without other risk factors. The pathological mechanisms of NAFLD are linked to functional differences of miRNAs in different biological environments.

View Article and Find Full Text PDF

Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias.

View Article and Find Full Text PDF

P2 purinergic receptors at the heart of pathological left ventricular remodeling following acute myocardial infarction.

Am J Physiol Heart Circ Physiol

January 2025

Université de Tours, Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Tours, France.

Pathological left ventricular remodeling is a complex process following an acute myocardial infarction, leading to architectural disorganization of the cardiac tissue. This phenomenon is characterized by sterile inflammation and the exaggerated development of fibrotic tissue, which is non-contractile and poorly conductive, responsible for organ dysfunction and heart failure. At present, specific therapies are lacking for both prevention and treatment of this condition, and no biomarkers are currently validated to identify at-risk patients.

View Article and Find Full Text PDF

Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.

View Article and Find Full Text PDF

Research in aging often refers to animal models, particularly C57BL/6J (B6J) mice, considered gold standard. However, B6J mice are distributed by different suppliers, which results in divers substrains exhibiting notable phenotypic differences. To ensure a suitable phenotype of cardiac aging, we performed heart analyses of young (5 months) and old B6J mice (24 months) from two substrains: B6JRj (Janvier) and B6JCrl mice (Charles River).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!