Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, alumina-doped MgO was produced as a solid alkali for lignocellulose pretreatment. Pretreatment with alumina-doped MgO disrupted the lignocellulose structure and significantly reduced the lignin content of the Z. japonica. After pretreatment, Z. japonica showed significant solubility in 1-allyl-3-methylimidazolium chloride (AMIMCl). The similar high solubility of pretreated Z. japonica samples by original alumina-doped MgO and used alumina-doped MgO also proved that alumina-doped MgO had strong stability, which can be recycled and used repeatedly. The regenerated cellulose was similar to microcrystalline cellulose according to FTIR and NMR analyses. Compared to microcrystalline cellulose, only the crystallinity of the regenerated cellulose decreased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2014.06.067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!