This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208253 | PMC |
http://dx.doi.org/10.3390/s140917832 | DOI Listing |
Sci Rep
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
Obstructive sleep apnea (OSA) patients have varying degrees of cognitive impairment, but the specific pathogenic mechanism is still unclear. Meanwhile, poor compliance with continuous positive airway pressure (CPAP) in OSA prompts better solutions. This study aimed to identify differentially expressed genes between the non-obese OSA patients and healthy controls, and to explore potential biomarkers associated with cognitive impairment.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy.
In recent years, the growing number of vehicles on the road have exacerbated issues related to safety and traffic congestion. However, the advent of the Internet of Vehicles (IoV) holds the potential to transform mobility, enhance traffic management and safety, and create smarter, more interconnected road networks. This paper addresses key road safety concerns, focusing on driver condition detection, vehicle monitoring, and traffic and road management.
View Article and Find Full Text PDFJ Imaging
January 2025
Department of Ophthalmology, General University Hospital of Alexandroupolis, 68131 Alexandroupolis, Greece.
Blink detection is considered a useful indicator both for clinical conditions and drowsiness state. In this work, we propose and compare deep learning architectures for the task of detecting blinks in video frame sequences. The first step is the training and application of an eye detector that extracts the eye regions from each video frame.
View Article and Find Full Text PDFInt Arch Otorhinolaryngol
January 2025
ENT Department, University General Hospital of Valencia, Valencia School of Medicine, Valencia, Spain.
Supracricoid partial laryngectomy is a surgical treatment for advanced laryngeal cancer which is implemented to preserve organ function, but it may cause obstructive sleep apnea syndrome (OSAS) due to anatomical changes after surgery that may be neglected by clinicians. Although the gold standard for the diagnosis of OSAS is polysomnography, respiratory polygraphy is an alternative valid method with a high level of diagnostic sensitivity and specificity; since the equipment is portable, it can be used at home, with no need for hospitalization. To describe the polygraphy result of patients submitted to supracricoid partial laryngectomy.
View Article and Find Full Text PDFFront Neurosci
January 2025
School of Data Science, Lingnan University, Hong Kong SAR, China.
Accurate monitoring of drowsy driving through electroencephalography (EEG) can effectively reduce traffic accidents. Developing a calibration-free drowsiness detection system with single-channel EEG alone is very challenging due to the non-stationarity of EEG signals, the heterogeneity among different individuals, and the relatively parsimonious compared to multi-channel EEG. Although deep learning-based approaches can effectively decode EEG signals, most deep learning models lack interpretability due to their black-box nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!