https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25256039&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 252560392015030620211021
1749-810492014Sep26Neural developmentNeural DevGenetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system.212110.1186/1749-8104-9-21Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking.Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLCγ docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered.We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment.KoudelkaJurajJHornJacqueline MJMVatanashevanopakornChinnavuthCMinichielloLilianaLCentre for Neuroregeneration, University of Edinburgh, EH16 4SB Edinburgh, UK. liliana.minichiello@pharm.ox.ac.uk.engR01DC009418DCNIDCD NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., Extramural20140926
EnglandNeural Dev1012865741749-8104EC 2.7.10.1Receptor, trkBIMAnimalsGeniculate GanglionembryologymetabolismMaleMiceMice, Inbred C57BLMice, TransgenicPoint MutationReceptor, trkBgeneticsmetabolismSignal TransductiongeneticsTastegeneticsphysiologyTaste BudsembryologymetabolismTongueinnervation
2014732014918201492760201492760201537602014926epublish25256039PMC417816210.1186/1749-8104-9-211749-8104-9-21Fan G, Egles C, Sun Y, Minichiello L, Renger JJ, Klein R, Liu G, Jaenisch R. Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Nat Neurosci. 2000;3(4):350–357. doi: 10.1038/73921.10.1038/7392110725924Huang T, Krimm RF. BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol. 2014;386(2):308–320. doi: 10.1016/j.ydbio.2013.12.031.10.1016/j.ydbio.2013.12.031PMC395034924378336Jones KR, Fariñas I, Backus C, Reichardt LF. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell. 1994;76(6):989–999. doi: 10.1016/0092-8674(94)90377-8.10.1016/0092-8674(94)90377-8PMC27118968137432Liu X, Ernfors P, Wu H, Jaenisch R. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature. 1995;375(6528):238–241. doi: 10.1038/375238a0.10.1038/375238a07746325Patel AV, Krimm RF. BDNF is required for the survival of differentiated geniculate ganglion neurons. Dev Biol. 2010;340(2):419–429. doi: 10.1016/j.ydbio.2010.01.024.10.1016/j.ydbio.2010.01.024PMC285421520122917Patel AV, Krimm RF. Neurotrophin-4 regulates the survival of gustatory neurons earlier in development using a different mechanism than brain-derived neurotrophic factor. Dev Biol. 2012;365(1):50–60. doi: 10.1016/j.ydbio.2012.02.008.10.1016/j.ydbio.2012.02.008PMC381609322353733Ma L, Lopez GF, Krimm RF. Epithelial-derived brain-derived neurotrophic factor is required for gustatory neuron targeting during a critical developmental period. J Neurosci. 2009;29(11):3354–3364. doi: 10.1523/JNEUROSCI.3970-08.2009.10.1523/JNEUROSCI.3970-08.2009PMC268342519295142Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I. Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds. Int J Dev Neurosci. 1997;15(4–5):563–576.9263033Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT, McClain J, Pan L, Helgren M, Ip NY, Boland P, Friedman B, Wiegand S, Vejsada R, Kato AC, Dechiara TM, Yancopoulos GD. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature. 1995;375(6528):235–238. doi: 10.1038/375235a0.10.1038/375235a07746324Fei D, Krimm RF. Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation. PLoS One. 2013;8(12):e83460. doi: 10.1371/journal.pone.0083460.10.1371/journal.pone.0083460PMC387395124386206Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–642. doi: 10.1146/annurev.biochem.72.121801.161629.10.1146/annurev.biochem.72.121801.16162912676795Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10(12):850–860. doi: 10.1038/nrn2738.10.1038/nrn273819927149Minichiello L, Casagranda F, Tatche RS, Stucky CL, Postigo A, Lewin GR, Davies AM, Klein R. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron. 1998;21(2):335–345. doi: 10.1016/S0896-6273(00)80543-7.10.1016/S0896-6273(00)80543-79728915Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 2002;36(1):121–137. doi: 10.1016/S0896-6273(02)00942-X.10.1016/S0896-6273(02)00942-X12367511Medina DL, Sciarretta C, Calella AM, Von Bohlen Und Halbach O, Unsicker K, Minichiello L. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J. 2004;23(19):3803–3814. doi: 10.1038/sj.emboj.7600399.10.1038/sj.emboj.7600399PMC52279815372074Jung HS, Akita K, Kim JY. Spacing patterns on tongue surface-gustatory papilla. Int J Dev Biol. 2004;48:157–161. doi: 10.1387/ijdb.15272380.10.1387/ijdb.1527238015272380Patel AV, Huang T, Krimm RF. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents. J Comp Neurol. 2010;518(16):3290–3301. doi: 10.1002/cne.22400.10.1002/cne.22400PMC334524420575060Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Dev Biol. 2001;232(2):508–521. doi: 10.1006/dbio.2001.0190.10.1006/dbio.2001.019011401409Ishida Y, Ugawa S, Ueda T, Yamada T, Shibata Y, Hondoh A, Inoue K, Yu Y, Shimada S. P2X(2)- and P2X(3)-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice. J Comp Neurol. 2009;514:131–144. doi: 10.1002/cne.22000.10.1002/cne.2200019266560Sollars SI, Smith PC, Hill DL. Time course of morphological alterations of fungiform papillae and taste buds following chorda tympani transection in neonatal rats. J Neurobiol. 2002;51:223–236. doi: 10.1002/neu.10055.10.1002/neu.10055PMC496523211984844Mistretta CM, Goosens KA, Farinas I, Reichardt LF. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs. J Comp Neurol. 1999;409(1):13–24. doi: 10.1002/(SICI)1096-9861(19990621)409:1<13::AID-CNE2>3.0.CO;2-O.10.1002/(SICI)1096-9861(19990621)409:1<13::AID-CNE2>3.0.CO;2-OPMC271012510363708Krimm RF, Barlow LA. The Senses: A Comprehensive Reference. 4. San Diego: Academic Press: Firestein S, Beauchkamp GS; 2008. Development of the taste system; pp. 157–182.Zaidi FN, Whitehead MC. Discrete innervation of murine taste buds by peripheral taste neurons. J Neurosci. 2006;26(32):8243–8253. doi: 10.1523/JNEUROSCI.5142-05.2006.10.1523/JNEUROSCI.5142-05.2006PMC667380816899719Krimm RF, Hill DL. Innervation of single fungiform taste buds during development in rat. J Comp Neurol. 1998;398(1):13–24. doi: 10.1002/(SICI)1096-9861(19980817)398:1<13::AID-CNE2>3.0.CO;2-C.10.1002/(SICI)1096-9861(19980817)398:1<13::AID-CNE2>3.0.CO;2-C9703025Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444:288–294. doi: 10.1038/nature05401.10.1038/nature0540117108952Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139:234–244. doi: 10.1016/j.cell.2009.10.001.10.1016/j.cell.2009.10.001PMC393651419837029Knapp L, Lawton A, Oakley B, Wong L, Zhang C. Keratins as markers of differentiated taste cells of the rat. Differentiation. 1995;58:341–349. doi: 10.1046/j.1432-0436.1995.5850341.x.10.1046/j.1432-0436.1995.5850341.x7542613