Loss of photoreceptors during retinal degeneration leads to blindness, but information can be reintroduced into the visual system using electrical stimulation of the remaining retinal neurons. Subretinal photovoltaic arrays convert pulsed illumination into pulsed electric current to stimulate the inner retinal neurons. Since required irradiance exceeds the natural luminance levels, an invisible near-infrared (915 nm) light is used to avoid photophobic effects. We characterized the thresholds and dynamic range of cortical responses to prosthetic stimulation with arrays of various pixel sizes and with different number of photodiodes. Stimulation thresholds for devices with 140 μm pixels were approximately half those of 70 μm pixels, and with both pixel sizes, thresholds were lower with 2 diodes than with 3 diodes per pixel. In all cases these thresholds were more than two orders of magnitude below the ocular safety limit. At high stimulation frequencies (>20 Hz), the cortical response exhibited flicker fusion. Over one order of magnitude of dynamic range could be achieved by varying either pulse duration or irradiance. However, contrast sensitivity was very limited. Cortical responses could be detected even with only a few illuminated pixels. Finally, we demonstrate that recording of the corneal electric potential in response to patterned illumination of the subretinal arrays allows monitoring the current produced by each pixel, and thereby assessing the changes in the implant performance over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375097PMC
http://dx.doi.org/10.1016/j.visres.2014.09.007DOI Listing

Publication Analysis

Top Keywords

photovoltaic arrays
8
retinal degeneration
8
retinal neurons
8
dynamic range
8
cortical responses
8
pixel sizes
8
μm pixels
8
performance photovoltaic
4
arrays
4
arrays in-vivo
4

Similar Publications

The bulk photovoltaic effect (BPVE) and its artificial variant generate photocurrent under zero external bias in non-centrosymmetric systems, particularly in on-chip miniaturized metasurface-based photodetectors. Despite significant advancements, enhancing the efficiency of local photocurrent collection remains a challenge, often impeded by non-uniform flow fields in graphene caused by nanoantenna contacts, which lead to carrier transport losses. In this study, we conducted a comprehensive investigation into the regulation of local photocurrent collection in zero-bias optoelectronic metasurface-based photodetectors and explored the impact of nanoantenna array configurations on photocurrent efficiency.

View Article and Find Full Text PDF

This study evaluates the energy efficiency of an urban dairy farm in Tlemcen, Algeria, by assessing the feasibility of a grid-connected photovoltaic (PV)/wind hybrid energy system. Using HOMER and MATLAB software, the study explores the potential for replacing the farm's existing energy systems with a hybrid system integrated into a low-voltage electrical grid. The HOMER software determined the configuration that resulted in the lowest net present cost, energy cost in kWh, greenhouse gas emission mitigation, and renewable fraction (RF).

View Article and Find Full Text PDF

Photovoltaic panels are the core components of photovoltaic power generation systems, and their quality directly affects power generation efficiency and circuit safety. To address the shortcomings of existing photovoltaic defect detection technologies, such as high labor costs, large workloads, high sensor failure rates, low reliability, high false alarm rates, high network demands, and slow detection speeds of traditional algorithms, we propose an algorithm named ST-YOLO specifically for photovoltaic module defect detection. This algorithm is based on YOLOv8s.

View Article and Find Full Text PDF

Bias-Switchable Photodetection and Photosynapse Dual-Functional Devices Based on 2D Perovskite/Organic Heterojunction for Imaging-to-Recognition Conversion.

Adv Mater

December 2024

Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.

Optoelectronic devices with imaging and recognition capabilities are crucial for developing artificial visual system (AVS). Bias-switchable photodetection and photosynaptic devices have been developed using 2D perovskite oxide/organic heterojunctions. This unique structure allows for modulated carrier dynamics under varied bias conditions, enabling the devices to function as photodetectors without bias and as photosynapses with bias.

View Article and Find Full Text PDF

Immediate Effect of Floating Solar Energy Deployment on Greenhouse Gas Dynamics in Ponds.

Environ Sci Technol

December 2024

U.S. Geological Survey, New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, Ithaca, New York 145853, United States.

Floating photovoltaic (FPV) solar energy offers promise for renewable electricity production that spares land for other societal benefits. FPV deployment may alter greenhouse gas (GHG) production and emissions from waterbodies by changing physical, chemical, and biological processes, which can have implications for the carbon cost of energy production with FPV. Here, we use an ecosystem-scale experiment to assess how GHG dynamics in ponds respond to installation of operationally representative FPV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!