A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting health utilities for children with autism spectrum disorders. | LitMetric

Comparative effectiveness of interventions for children with autism spectrum disorders (ASDs) that incorporates costs is lacking due to the scarcity of information on health utility scores or preference-weighted outcomes typically used for calculating quality-adjusted life years (QALYs). This study created algorithms for mapping clinical and behavioral measures for children with ASDs to health utility scores. The algorithms could be useful for estimating the value of different interventions and treatments used in the care of children with ASDs. Participants were recruited from two Autism Treatment Network sites. Health utility data based on the Health Utilities Index Mark 3 (HUI3) for the child were obtained from the primary caregiver (proxy-reported) through a survey (N = 224). During the initial clinic visit, proxy-reported measures of the Child Behavior Checklist, Vineland II Adaptive Behavior Scales, and the Pediatric Quality of Life Inventory 4.0 (start measures) were obtained and then merged with the survey data. Nine mapping algorithms were developed using the HUI3 scores as dependent variables in ordinary least squares regressions along with the start measures, the Autism Diagnostic Observation Schedule, to measure severity, child age, and cognitive ability as independent predictors. In-sample cross-validation was conducted to evaluate predictive accuracy. Multiple imputation techniques were used for missing data. The average age for children with ASDs in this study was 8.4 (standard deviation = 3.5) years. Almost half of the children (47%) had cognitive impairment (IQ ≤ 70). Total scores for all of the outcome measures were significantly associated with the HUI3 score. The algorithms can be applied to clinical studies containing start measures of children with ASDs to predict QALYs gained from interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270935PMC
http://dx.doi.org/10.1002/aur.1409DOI Listing

Publication Analysis

Top Keywords

children asds
16
health utility
12
start measures
12
health utilities
8
children autism
8
autism spectrum
8
spectrum disorders
8
utility scores
8
measures children
8
children
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!