Covalent organic frameworks (COFs) hold great promise in several applications, such as sieves, catalytic supports and gas storage because of their unique structures and electronic properties. However, most of these metal-free COFs are nonmagnetic and cannot be directly used in spintronics. Here, based on first-principles calculations, we predict that substitutional doping of COF-5 with nitrogen and boron atoms can modify the electronic structures, inducing stable electron spin-polarization in the framework. The preferability of the different doping sites is checked. The electronic structures of the doped COF-5 are dependent on the doping sites and doping atoms, which offer high degrees of freedom to tune the electronic properties. Kagome lattices of S = 1/2 spins can be achieved in the COF-5, suggesting a promising candidate for spin-liquid materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp03478c | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A.I. Virtanens Plats 1, University of Helsinki FI-00014, Finland.
We point out that although a litany of studies have been published on atoms in hard-wall confinement, they have either not been systematic, having only looked at select atoms and/or select electron configurations, or they have not used robust numerical methods. To remedy the situation, we perform in this work a methodical study of atoms in hard-wall confinement with the HelFEM program, which employs the finite element method that trivially implements the hard-wall potential, guarantees variational results, and allows for easily finding the numerically exact solution. Our fully numerical calculations are based on nonrelativistic density functional theory and spherically averaged densities.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
Magnetic field effects (MFE) of ferromagnetic spin electrocatalysts have attracted significant attention due to their potential to enhance catalytic activity under an external magnetic field. However, no ferromagnetic spin catalysts have demonstrated MFE in the electrocatalytic reduction of nitrate for ammonia (NORR), a pioneering approach towards NH production involving the conversion from diamagnetic NO to paramagnetic NO. Here, we report the ferromagnetic Fe-TiO to investigate MFE on NORR.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Marine Science and Engineering, Hainan University, Haikou, China.
Severe photogenerated charge carrier recombination involved in photocatalytic CO reduction leads to low photocatalytic efficiency. Here we demonstrate that a chiral hierarchical structure could facilitate charge separation in BiOBr, thus suppressing charge recombination and enhancing photocatalytic performance. Chiral helical flower-like BiOBr nanospheres were prepared a D/L-sorbitol-assisted hydrothermal process, exhibiting a 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!