Fluorite structured nanocrystals of RbGdF4 in cubic symmetry have successfully been synthesized by employing a simple, one-step, and template-free wet chemical method at room temperature. Considering the structural model of cubic KLaF4 in the Fm̅3m space group, the observed powder X-ray diffraction (PXRD) pattern was fitted by the Le Bail procedure with the cubic lattice constant of a = 5.8244 (1) Å. Both high-resolution transmission electron microscopic (HR-TEM) and dynamic light scattering (DLS) measurements revealed the monodispersity of the nanocrystals with their size in the range of 2-18 nm. Upon excitation at 980 nm, Yb(3+), (Er(3+)/Ho(3+)/Tm(3+)) codoped RbGdF4 nanocrystals showed multicolor upconversion including red, yellow, blue, and the combination of basic color (near-white) emissions. Also, near-white upconversion emission from Yb(3+), Ho(3+), Tm(3+) triply doped cubic RbGdF4 nanocrystals was observed at varying laser power densities. RbGdF4 nanocrystals exhibited superparamagnetic behavior with a molar magnetic susceptibility of 2.61 × 10(-2) emu·Oe(-1)·mol(-1) at room temperature, while at low temperature (5 K) a saturation magnetization value of 90.41 emu·g(-1) at an applied field of at 10 kOe was observed. Non-interaction of the localized magnetic moment of Gd(3+) ions in the host matrix has been reasoned out for the observed superparamagnetic behavior. From the Langevin fit of the magnetic data, the average particle diameter obtained was approximately 2.2 nm, matching well with the values from other measurements. RbGdF4 nanocrystals exhibited a large ionic longitudinal relaxivity (r1 = 2.30 s(-1)·mM(-1)), suggesting their potential applicability as a promising agent for T1 contrast magnetic resonance imaging (MRI) in addition to the applications arising from the coupling of optical and magnetic functions such as multiplexing biodetection, bioimaging (optical and MRI), and other optical technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic5013022 | DOI Listing |
Inorg Chem
October 2014
Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi 110007, India.
Fluorite structured nanocrystals of RbGdF4 in cubic symmetry have successfully been synthesized by employing a simple, one-step, and template-free wet chemical method at room temperature. Considering the structural model of cubic KLaF4 in the Fm̅3m space group, the observed powder X-ray diffraction (PXRD) pattern was fitted by the Le Bail procedure with the cubic lattice constant of a = 5.8244 (1) Å.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!