Necroptosis: an emerging type of cell death in liver diseases.

World J Gastroenterol

Waqar Khalid Saeed, Dae Won Jun, Department of Gastroenterology, Hanyang University School of Medicine, Seoul 133-070, South Korea.

Published: September 2014

Cell death has been extensively evaluated for decades and it is well recognized that pharmacological interventions directed to inhibit cell death can prevent significant cell loss and can thus improve an organ's physiological function. For long, only apoptosis was considered as a sole form of programmed cell death. Recently necroptosis, a RIP1/RIP3-dependent programmed cell death, has been identified as an apoptotic backup cell death mechanism with necrotic morphology. The evidences of necroptosis and protective effects achieved by blocking necroptosis have been extensively reported in recent past. However, only a few studies reported the evidence of necroptosis and protective effects achieved by inhibiting necroptosis in liver related disease conditions. Although the number of necroptosis initiators is increasing; however, interestingly, it is still unclear that what actually triggers necroptosis in different liver diseases or if there is always a different necroptosis initiator in each specific disease condition followed by specific downstream signaling molecules. Understanding the precise mechanism of necroptosis as well as counteracting other cell death pathways in liver diseases could provide a useful insight towards achieving extensive therapeutic significance. By targeting necroptosis and/or other parallel death pathways, a significant cell loss and thus a decrement in an organ's physiological function can be prevented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4168087PMC
http://dx.doi.org/10.3748/wjg.v20.i35.12526DOI Listing

Publication Analysis

Top Keywords

cell death
28
liver diseases
12
necroptosis
11
cell
9
death
8
cell loss
8
organ's physiological
8
physiological function
8
programmed cell
8
necroptosis protective
8

Similar Publications

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Background: Congenital neutropenia is a primary immunodeficiency characterized by quantitative anomalies in neutrophil counts. It is classified as mild, moderate, or severe. Hematopoietic stem cell transplantation stands as a potential therapeutic intervention; nevertheless, graft-versus-host disease emerges as a main complication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!