Random cationic copolymer brushes composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and -isopropylacrylamide (NIPAAm) were synthesized using the atom transfer radical polymerization (ATRP) method. The effects of varying the monomer feed ratios (30:70 and 70:30 DMAEMA:NIPAAm) and polymerization times on the film height, morphology and stimuli response to pH of the brush were evaluated. While the polymerization time was found to have little influence on the properties of the brushes, the monomer feed ratios had a great impact. The 70 % DMAEMA polymer brush had similar height as the 30 % DMAEMA brush after 45 min; however, it had a greater response to pH and morphological change compared to the 30 % DMAEMA. The 70 % DMAEMA brush was used to demonstrate an efficient approach to alleviate the ion suppression effect in MALDI analysis of complex mixtures by effectively fractionating a binary mixture of peptides prior to MALDI-MS analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170065PMC
http://dx.doi.org/10.1016/j.polymer.2014.06.075DOI Listing

Publication Analysis

Top Keywords

stimuli response
8
polymer brush
8
monomer feed
8
feed ratios
8
dmaema brush
8
brush
5
dmaema
5
response cationic
4
cationic polymer
4
brush prepared
4

Similar Publications

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Background: Dementia exhibits abnormal network activity, including altered gamma frequency (30-100 Hz) in Alzheimer's disease (AD). A non-pharmacological, non-invasive approach to AD treatment involves stimulating sensory inputs using gamma band, with 40 Hz as the most effective in eliciting a robust EEG response. Light and sound stimulation at 40 Hz reduces AD pathology in mouse models and improves cognition in humans with AD.

View Article and Find Full Text PDF

Background: Compared with the E3 allele of Apolipoprotein E (APOE), E4 increases late-onset Alzheimer's Disease (AD) risk up to 15-fold, while the E2 allele substantially decreases risk. In the CNS, ApoE is predominantly synthesized by astrocytes and microglia, making these two cell types promising targets for ApoE-directed therapeutic approaches. Our lab has generated an inducible "switch" mouse model (APOE4s2) in which we can conditionally replace E4 with the protective E2 in a cell-specific manner.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by progressive, irreversible neurodegeneration, leading to memory loss and cognitive decline. In mouse models of AD, global decreases in cerebral blood flow (CBF) are brought on by the plugging of capillaries by arrested neutrophils, and the administration of the neutrophil-specific antibody against Ly6G (anti-Ly6G) reduces these capillary stalls in minutes and improves cognitive function within hours. This suggests that at least some aspects of neural activity impairment are reversible, but the mechanism of this recovery - and what specific neural activity is normalized - is not yet known.

View Article and Find Full Text PDF

Background: Up to 84% of patients with Alzheimer's Disease (AD) have vascular damage which precedes cognitive decline. Inflammation induces changes in blood-brain-barrier (BBB) integrity, though the link between induction of inflammation and AD is unclear. IL1β, a cytokine upregulated in patients with AD and in mouse models of the disease, is released and interacts with IL1R1 and its obligate co-receptor, IL1RAP, to induce downstream signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!