Synthetic and bioinspired cage nanoparticles for drug delivery.

Nanomedicine (Lond)

Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.

Published: July 2014

Nanotechnology has the potential to revolutionize drug delivery, but still faces some limitations. One of the main issues regarding conventional nanoparticles is their poor drug-loading and their early burst release. Thus, to overcome these problems, researchers have taken advantage of the host-guest interactions that drive some assemblies to form cage molecules able to strongly entrap their cargo and design new nanocarriers called cage nanoparticles. These systems can be classified into two categories: bioinspired nanosystems such as virus-like particles, ferritin, small heat shock protein: and synthetic host-guest supramolecular systems that require engineering to actually form supramolecular nanoassemblies. This review will highlight the recent advances in cage nanoparticles for drug delivery with a particular focus on their biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.14.67DOI Listing

Publication Analysis

Top Keywords

cage nanoparticles
12
drug delivery
12
nanoparticles drug
8
synthetic bioinspired
4
cage
4
bioinspired cage
4
nanoparticles
4
delivery nanotechnology
4
nanotechnology potential
4
potential revolutionize
4

Similar Publications

In this paper, microporous Zn-based zeolitic imidazolate framework with the sodalite cage structure (SOD-ZIF-8) was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and N2 adsorption were employed to characterize the synthesized material. An ultra-sensitive electrochemical sensor based on highly dispersed bimetallic Ni-Pt nanoparticles immobilized on zeolitic metal-organic framework ZIF-8 for dopamine quantification is introduced for the first time.

View Article and Find Full Text PDF

Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e.

View Article and Find Full Text PDF

Space Exploration of Metal-Organic Frameworks in the Mesopore Regime.

Acc Chem Res

January 2025

Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

ConspectusThe past decades have witnessed the proliferation of porous materials offering high surface areas and the revolution in gas storage and separation, where metal-organic frameworks (MOFs) stand out as an important family. Alongside the pursuit of higher surface area, the increase in the size of guests, such as nanoparticles and biomolecules, has also led to the demand for larger space defined by the pores and cages within the MOF structure, from the conventional micropore regime (<2 nm) toward the mesopore regime (2-50 nm). Among the essential elements in the design of MOFs, molecular building blocks, their coordination and spatial arrangement, the chemistry for molecular design, and coordination bonds have become relatively mature, offering precise control of the shape and environment of the molecularly defined 3D cages; however, the correlation between the geometrical parameters and the size of polyhedrons describing the cages, concerning the spatial arrangement of building blocks, is much less explored.

View Article and Find Full Text PDF

In the existing development of extensive drug screening models, 3D cell cultures outshine conventional 2D monolayer cells by closely imitating the in vivo tumor microenvironment. This makes 3D culture a more physiologically relevant and convenient system in the regime of preclinical drug testing. In the nanomedicinal world, nanoconjugates as nanocarriers are largely hunted due to their capability of precisely binding to target cells and distributing essential dosages of therapeutic drugs with enhanced safety profiles.

View Article and Find Full Text PDF

A new propulsion mechanism for nano- and microrocket engines is hypothesized. It is based on the instantaneous expulsion from hydrophobic nanopores triggered by irradiation from electromagnetic microwaves, ultrasound, or sudden pressure release. A large energy output is needed for the propulsion of a nanoparticle, and the value can be determined experimentally and by means of atomistic simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!