Background & Objectives: An alarming rate of deforestation has been reported from Sonitpur district of Assam, India therefore, a study was initiated during 2009 using remote sensing (RS) to assess deforested areas in the district and to study the impact on malaria vectors in order to formulate appropriate control strategy.
Methods: RS imageries of 2000 and 2009 were used to assess deforested areas in the selected district. Entomological data were collected in four surveys during 2009-2011. The data were analyzed statistically using test of single proportions (χ 2 ) and pair-wise comparison. Vector incrimination was done using enzyme-linked immunosorbent assay (ELISA) and entomological inoculation rate (EIR) was calculated to estimate transmission intensity.
Results: The deforested areas were identified in north-western parts of Sonitpur district falling in Dhekiajuli Primary Health Centre (PHC). The forest cover of the PHC decreased >50% during 2000-2009. Five species of anopheline vectors were collected. Anopheles minimus sensu lato (s.l.) was collected least abundantly while An. culicifacies s.l. prevailed most abundantly and significant difference was observed between proportions of the collected vector species. Pair-wise comparison between An. culicifacies s.l. and An. minimus s.l. was also found statistically significant indicating that An. culicifacies s.l. is establishing its population in deforested areas. An. culicifacies s.l. was found ELISA positive and EIR was measured as 4.8 during transmission season.
Conclusion: An. culicifacies s.l. replaced An. minimus s.l., the vector of malaria in northeast India and was found ELISA positive, therefore could have possible role in malaria transmission in the deforested areas of the district.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.
A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Environmental Biotechnology, Biotechnology Research Center, Al-Nahrain University, 10018 Baghdad, Iraq.
Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan 430070, China. Electronic address:
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876±0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!