Back-propagation beamformer design for motion estimation in echocardiography.

Ultrason Imaging

Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, France.

Published: July 2015

Transverse oscillation (TO) techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates point spread function (PSF) and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation (BP) to build TOs in sector-shaped geometry. Numerical simulations and experimental data give a comparison between proposed and conventional beamforming for TOs. The accuracy is first quantified by comparing the generated and theoretical PSF using the root mean square error (RMSE) and shows that BP-based beamforming approximates the desired TOs more closely than the conventional approach. Motion estimation is then evaluated. The axial and lateral displacements are within the range [0-0.6] mm and [0°-6.4°], respectively, which correspond to 0.8 times the axial (0.73 mm) and lateral (8°) wavelengths. The result shows that the proposed method yields a clear improvement for lateral displacements, by reducing the error by 28.6% compared with Fourier transform-based beamforming, while maintaining the same error for axial motion estimation. Experimental measurements are discussed to complete this study and confirm that BP-based beamforming leads to better controlled TO images than conventional Fourier-based beamforming.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0161734614550659DOI Listing

Publication Analysis

Top Keywords

motion estimation
16
bp-based beamforming
8
lateral displacements
8
beamforming
6
tos
5
back-propagation beamformer
4
beamformer design
4
motion
4
design motion
4
estimation
4

Similar Publications

Introduction: Wrist-worn accelerometers can capture stepping behavior passively, continuously, and remotely. Methods utilizing peak detection, threshold crossing, and frequency analysis have been used to detect steps from wrist-worn accelerometer data, but it remains unclear how different approaches perform across a range of walking speeds and free-living activities. In this study, we evaluated the performance of four open-source methods for deriving step counts from wrist-worn accelerometry data, when applied to data from a range of structured locomotion and free-living activities.

View Article and Find Full Text PDF

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Predicting the location of moving objects in noisy environments is essential to everyday behavior, like when participating in traffic. Although many objects provide multisensory information, it remains unknown how humans use multisensory information to localize moving objects, and how this depends on expected sensory interference (e.g.

View Article and Find Full Text PDF

Human upper limb kinematics using a novel algorithm in post-stroke patients.

Proc Inst Mech Eng H

January 2025

Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.

Assessing the kinematics of the upper limbs is crucial for rehabilitation treatment, especially for stroke survivors. Nowadays, researchers use computer vision-based algorithms for Human motion analysis. However, specific challenges include less accuracy, increased computational complexity and a limited number of anatomical key points.

View Article and Find Full Text PDF

Background: Ultrasound lung surface motion measurement is valuable for the evaluation of a variety of diseases. Speckle tracking or Doppler-based techniques are limited by the loss of visualization as a tracked point moves under ribs or is dependent.

Methods: We developed a synthetic lateral phase-based algorithm for tracking lung motion to overcome these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!